- 1. Complete the proof of zero drag of the Rankine fairing using the momentum integral method, as outlined in class.
- 2. In the Butler sphere theorem, we needed the following result: Show that $\Psi_1(R,\theta) \equiv \frac{R}{a}\Psi(\frac{a^2}{R},\theta)$ is the streamfunction of an irrotational, axisymmetric flow in spherical polar coordinates, provided that $\Psi(R,\theta)$ is such a flow. (Hint; Show that $L_R\Psi_1(R,\theta) = L_{R_1}\Psi(R_1,\theta)$, where $R_1 = a^2/R$. Here $L_R\Psi = R^2\frac{\partial^2\Psi}{\partial R^2} + \sin\theta\frac{\partial}{\partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial\Psi}{\partial \theta}\right)$.)
- 3. Show that in spherical polar coordinates, the streamfunction Ψ for a source of strength Q, placed at the origin, normalized so that $\Psi=0$ on $\theta=0$, is given by $\Psi=\frac{Q}{4\pi}(1-\cos\theta)$. (Recall $u_R=\frac{1}{R^2\sin\theta}\frac{\partial\Psi}{\partial\theta},u_\theta=\frac{1}{R\sin\theta}\frac{\partial\Psi}{\partial R}$.) Find the streamfunction in spherical polars for the airship model consisting of equal source and sink of strength Q, the source at the origin and the sink at $R=1,\theta=0$, in a uniform stream with streamfunction $\frac{1}{2}UR^2\sin\theta^2$. The sink will thus involve the angle with respect to $R=1,\theta=0$. Use the law of cosines $(c^2=a^2+b^2-2ab\cos\theta$ for a triangle with θ opposite side c) to express Ψ in terms of R,θ .
- 4. (a) Show that the complex potential $w=Ue^{i\alpha}z$ determines a uniform flow making an angle α with respect to the x-axis and having speed U.
 - (b) Describe the flow field whose complex potential is given by

$$w = Uze^{i\alpha} + \frac{Ua^2e^{-i\alpha}}{z}.$$

5. Recall the following rule for the motion of point vortices in two dimensions: Each vortex moves with the velocity equal to the sum over the velocities contributed by all other vortices, at the point in question. That is, now using the complex potential.

$$dz_k(t)/dt = \overline{w'(z_k)}, w_k = \sum_{j=1, j\neq k}^{N} \gamma_j \log(z - z_j(t)), \gamma = -i\Gamma/2\pi,$$

where the strengths are γ_i and the positions are $z_i(t)$. (a) Using this rule, show that two vortices of equal strengths rotate on a circle with center at the midpoint of the line joining them, and find the speed of their motion.

(b) Show that two vortices of strengths γ and $-\gamma$ move together on straight parallel lines perpendicular to the line joining them. Again find the speed of their motion.