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ABSTRACT

The swimming of a sheet, originally treated by G.I. Taylor

(1951) for the case of Stokes flow, is considered at moderate and

high Reynolds numbers using matched asymptotic expansions. It

is shown that for propagating waves with frequency ω, wavenum-

ber k, and amplitude b, the swimming speed must be deduced

from a dual expansion in powers of the small parameters bkR1/2

and R−1/2, where R = ω
νk2 is the Reynolds number. The result

of Tuck (1968) for the leading term of the swimming velocity is

recovered, and higher-order results are given. For the case of

a planar, stretching sheet, the expansion is in powers of bk and

R−1/2 and a limit for large R is obtained as a boundary layer.

We contrast these results with the inviscid case, where no swim-

ming is possible. We also consider briefly the application of these

ideas to “recoil swimming”, wherein the movements of the cen-

ter of mass and center of volume of a body allow swimming at

both finite and infinite Reynolds numbers.

INTRODUCTION

In his seminal paper on the swimming of micro-organisms

[1], G.I. Taylor showed how waves on a two-dimensional sheet

could cause the sheet to move, i.e. “swim”, relative to the fluid

at infinity. Taylor assumed the fluid dynamics of Stokes flow, but

his results were extended by Tuck [2] to arbitrary finite Reynolds

number. For the case of a progressive wave of amplitude b, wave

number k, and phase velocity c, Tuck obtained, by expansion in

the small parameter bk, the leading term

Us = −1

2
c(kb)2 1 +F(R)

2F(R)
(1)

for the swimming velocity, where F = ℜ[
√

1 + iR] =
[

1+(1+R2)
1/2

2

]1/2

and R = ω
νk2 is a Reynolds number based on the

properties of the wave. This swimming velocity has a finite limit

− 1
4
c(kb)2 as R→∞. The rate of dissipation per unit area of sheet

increases with R as
√

R, and in fact the velocity near the sheet is

of order bk
√

R for large R, so it is clear that Tuck’s result should

be regarded as asymptotic in bk for fixed R, and not uniformly

valid in the limit of large R. The purpose of the present paper

is to attempt to clarify the nature of the approximation at large

R using the techniques of matched asynmptotic expansions. We

apply this approach to various cases considered by Taylor, and

also consider analogous results for a perfect fluid.

FORMULATION

Since we shall be dealing with a nonlinear problem, we re-

strict attention to two of the problems studied by Taylor [1]. The

first (I) is a progressive wave of shape on a two-dimensional

elastic sheet, the equation of the boundary being y = ys(x) =
b sin(kx−ωt),xs = x, bk � 1, each point on the sheet oscillating

in the vertical. The second (II) is a progressive wave of stretch-

ing on a flat sheet. Here the Lagrangian coordinates of a point on

the sheet with initial position x0 +a sin(kx0),y0 = 0, ak � 1 are

given by xs == x0 + cos(kx0 −ωt),ys = 0. The streamfunction

for the fluid flow, ψ(x,y, t), (u,v) = (ψy,−ψx) being the velocity

field, satisfies the two-dimensional Navier-Stokes equation

∂∇2ψ

∂t
+

∂ψ

∂y

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂y
−ν∇4ψ = 0. (2)



The fluid occupies the domain above the surface of the sheet. We

assume tha ψx and ψyy vanish as y → ∞, i.e. the flow is at most a

uniform flow in the x-direction at y = +∞. On the sheet surface

the no-slip condition prevails:

u(xs,ys, t) = 0,v(xs,ys, t) = −bωcos(kxs −ωt) (I) (3)

at a point (xs,ys), where ys = b sin(kxs −ωt),xs = x for problem

I. For problem II

u(xs,ys, t) = aωsin(kxs −ωt),v(xs,ys, t) = 0 (II) (4)

with xs = x + a cos(kxs −ωt) = 0,ys = 0 and |ak| < 1. Passing

to the dimensionless variables (ξ,η) = (kx−ωt,ky),Ψ(ξ,η) =
(k2/ω)ψ(x,y, t) we have the following problem in ξ,η:

−∂∇2Ψ

∂ξ
+

∂Ψ

∂η

∂∇2Ψ

∂ξ
− ∂Ψ

∂ξ

∂∇2ψ

∂η
− 1

R
∇4Ψ = 0, (5)

Ψξ(ξ,εsinξ) = εcosξ, Ψη(ξ,εsinξ) = 0 (I), (6)

Ψξ(ξ+ εcosξ,0) = 0, Ψη(ξ+ εcosξ,0) = εsinξ (II). (7)

Here ∇2 = ∂2

∂ξ2 + ∂2

∂η2 ,ε = bk (I),= ak (II), and R = ω
νk2 is the

Reynolds number. In our analysis ε will be small and the ex-

act problem will be replaced by the construction of asymptotic

expansions defined on the half-space η > 0.

The direct calculation for I

To indicate the approach of Tuck [2] for problem I, we ex-

pand in ε:

Ψ(ξ,η; ε,R) = εℜ[Ψ1(η; R)e−iξ]

+ε2Ψ20(η,R)+ ε2ℜ[Ψ22(η,R)e−2iξ]+O(ε3). (8)

Here Ψ1 is the leading solution of a linear problem, Ψ22 is the

zero-mean component of the second-order term generated by the

nonlinearities, and Ψ20 is a real-valued average over ξ of the

second-order term. The negative of the swimming velocity is

equal to the limit of
∂Ψ20

∂η for large η. The nonlinearities come

from two sources, the first being the inertial terms of (5), the

second, restricted to problem I, being the displacement εsinξ of

the boundary from the horizontal.

Now Ψ1 satisfies the following linear problem:

i(D2 −1)Ψ1 −
1

R
(D2 −1)2Ψ1 = 0, (9)

Ψ(ξ,0) = i,
dΨ1

dη
(ξ,0) = 0, (10)

where D = d/dη. The solution is

Ψ1 =
1 + f

R
[ f e−η − e− f η], f = (1 + iR)1/2. (11)

We note that, after substituting Ψ at this order into (5), Ψ20 is

found to satisfy

1

R
D4Ψ20 = −1

2
〈|1 + f |2ℜ[ f (1 + f ∗)e−(1+ f ∗)η

−( f + f ∗)e−( f + f ∗)η]〉, (12)

where f ∗ is the complex conjugate of f and 〈·〉 denotes the ξ-

average. The second source of nonlinearity comes into play in

the boundary conditions on Ψ20:

DΨ20(0) = −〈sin ξℜ[e−ξD2Ψ1]〉, D2Ψ20(∞) = 0. (13)

Integration of (12) and the boundary conditions then yields

DΨ20(∞) = −Us =
1

4
( f + f ∗)+

1

2
|1 + f |2

×ℜ
[ f

(1 + f ∗)2
− 1

f + f ∗

]

. (14)

Some manipulation of this last expression using f 2 + f ∗2 = 2 and

f f ∗ = 2F2 −1 yields (1).
It should be noted from (11) that when R is large the term

e− f η decays like e−η
√

R/2, indicating a boundary-layer structure

of thickness O(R−1/2) relative to the wavelength.

Analysis of I for large R using matched expansions

We now consider simultaneously the two assumptions of

small ε and large R. The boundary-layer structure referred to

above suggests that the direct perturbational approach has im-

plicitly assumed that εR1/2 � 1. We shall now verify this and in-

troduce asymptotic expansions in powers of δ≡ εR1/2 and R−1/2.



The inner expansion

To study the structure of the flow near the sheet at large R it

is natural to introduce the inner variables

Ψ = R1/2Ψ, η = R1/2η. (15)

If (5) is expressed in these inner variables, the 1
R

factor of the

viscous stress term is expelled from the leading term and ∇2Ψ is

replaced by R1/2(D
2
Ψ−R−1Ψξξ). Taking the limit as R → ∞ in

these variables yields the inner limit of (5):

−D
2
Ψξ +DΨD

2
Ψξ −ΨξD

3
Ψ−D

4
Ψ = 0. (16)

Here D = ∂
∂η . The conditions at the sheet for the inner limit of I

are

Ψξ = δ cosξ, Ψη = 0, η = δ sinξ. (17)

Thus only δ survives as a parameter; this new expansion param-

eter is a measure of the wave amplitude relative to the boundary-

layer thickness. The inner limit may thus be constructed as an ex-

pansion for small δ, and the inner expansion may be developed as

a double expansion in δ and R−1/2. In the representation of these

terms it will be helpful to assign an ordering of R−1/2 equal to

O(δ), so that Nth-order terms will will be of order δmR−n/2 with

m+n = N . The corresponding term of the inner expansion will

be Ψmn. Note the subscripts used in (8) have a different mean-

ing. Note also that we must allow for a possible but hidden de-

pendence of every term on the two parameters, corresponding to

terms of order intermediate between powers, often consisting of

logarithmic factors. In fact for the terms considered below we

will not encounter these intermediate orders.

The inner expansion thus takes the form

Ψ ∼ Ψ10δ +δR−1/2Ψ11 +
[

δ2R−1/2Ψ21 +δR−1Ψ12

]

+
[

δ2R−1Ψ22 +δR−3/2Ψ13 +δ3R−1/2Ψ31]+O(δ5). (18)

Note that there is no term Ψ01, nor terms Ψ0n or Ψn0 for n > 1.

The leading term is

Ψ10 = sinξ. (19)

The outer expansion

As in conventional boundary-layer theory, we postulate the

outer expansion as a series of harmonic functions, to which the
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Figure 1. Terms of the inner and outer expansions for problem I needed

to compute the leading term for swimming velocity. Heavy dashed line

indicated forcing by nonlinearity of the equations. Light dashed lines indi-

cate forcing through the boundary conditions. Solid lines indicate match-

ing conditions are determining.

boundary-layer structure must decay, and with which it must

match. The outer expansion will have a form similar to the inner

expansion:

R1/2Ψ ∼ Ψ10δ +δR−1/2Ψ11 +
[

δ2R−1/2Ψ21 +δR−1Ψ12

]

+
[

δ2R−1Ψ22 +δR−3/2Ψ13 +δ3R−1/2Ψ31]+O(δ5). (20)

Note the factor of R1/2 in the left. The term Ψ10 matches with

Ψ10, in the sense that

lim
η→∞

Ψ10 = lim
η→0

Ψ (21)

In general, however, matching must occur in an intermediate

overlap region where limits are taken with a variable of the form

ηα = Rαη,0 < α < 1/2 held fixed [3].

We therefore have Ψ10 = sinξe−η. The inner expansion of

Ψ10 is sinξ[1−R−1/2η +O(R−1)]. The O(R−1/2) part matches

with Ψ11.

In preparation for the derivation of subsequent terms, we

show in figure 1 a matching a diagram illustrating the relations

between terms of the inner and outer expansions.

Ψ11 and Ψ11

Now Ψ11 satisfies the following homogeneous linear prob-

lem:

D
2
∂ξΨ11 +D

4
Ψ11 ≡ LΨ11 = 0, (22)

Ψ11ξ(ξ,0) = DΨ11(ξ,0) = 0. (23)



The solution, behaving like −η sinξ for large η, is

Ψ11 = −η sinξ− 1√
2

e−Y (sinX + cosX)+
1√
2
(sinξ+ cosξ).

(24)

Here and elsewhere we will use the notation

Y = η/
√

2, X = ξ+η/
√

2. (25)

We can thus see the origin of Ψ11, to match with the terms
1√
2
(sin ξ+ cosξ) in (24):

Ψ11 =
1√
2
(sinξ+ cos ξ)e−η. (26)

The 21 and 12 terms

The term Ψ21 comes from the advection of Ψ11 by Ψ10, and

satisfies

LΨ21 = −cosξ D
3
Ψ11, (27)

with

Ψ21ξ +D∂ξΨ11 sinξ = 0, DΨ21 +D
2
Ψ11 sinξ = 0 (28)

when η = 0. Integration and the conditions at infinity yield

∂ξΨ21 +D
2
Ψ21 = −cosξ DΨ11. (29)

We then obtain

Ψ21 = −1

2
cos2ξ− sinξ e−Y sinX . (30)

Matching then yields

Ψ21 = −1

2
cos2ξ e−2η. (31)

The term Ψ12 is forced by an O(R−1) term in the equation

in inner variables, satisfying

LΨ12 = −∂3
ξΨ10 = cosξ, (32)

together with homogeneous conditions on η = 0, and matching

with the inner expansions of Ψ10 and Ψ11 . It is given by

Ψ12 =
1

2
η2 sinξ− η√

2
(sinξ+ cosξ)− e−Y cosX + cosξ. (33)

Matching then gives us the outer term

Ψ12 = cosξ e−η. (34)

The 31 and 13 terms

Similarly, Ψ31 solves

LΨ31 = −cosξ D
3
Ψ21, (35)

with

DΨ31 = −1

2
D

3
Ψ11 sin2 ξ−D

2
Ψ21 sinξ (36)

and

∂ξΨ31 = −1

2
D

2
∂ξΨ11 sin2 ξ−D∂ξΨ21 sinξ (37)

on η = 0. A particular solution of (35) is

Ψ
p

31 =
1

4
√

2
cos2ξ e−Y (sinX − cosX). (38)

We note that

DΨ
p

31

∣

∣

η=0
=

1

4
cosξ cos2ξ =

1

8
(cos3ξ+ cosξ), (39)

∂ξΨ
p

31

∣

∣

η=0
=

3

8
√

2
(sin3ξ+ cos3ξ)+

1

8
√

2
(sinξ− cosξ). (40)

On the other hand the right-hand side of (36) equals 1
8
(cos3ξ−

cosξ), and that of (37) equals 3

8
√

2
(sin3ξ+cos3ξ)− 1

8
√

2
(sinξ+

3 cosξ). Thus we have, adding the requisite solution of the ho-

mogeneous equation,

Ψ31 = Ψ
p

31 +
1

4
√

2
e−Y (cosX − sinX). (41)

The term Ψ13 is required to match with the appropriate terms

of the inner expansions of Ψ1 j, j = 0,1,2, and is forced by linear

terms involving Ψ11. The equation is

LΨ13 = −(∂ξ +2D
2
)∂2

ξΨ11. (42)

The boundary conditions are homogeneous. A particular solu-

tion is

Ψ
p

13 =
1

2
ηe−Y cosX +

1

2
√

2
η2(sinξ+ cosξ)− 1

6
η3 sinξ, (43)



and to satisfy the condition on DΨ13(ξ,0) as well as match with

Ψ12 we have

Ψ13 = Ψ
p

13 +
1

2
√

2
e−Y (sinX−cos X)−η cosξ− 1

2
√

2
(sinξ−cos ξ).

(44)

Thus

Ψ31 = − 1

2
√

2
(sinξ− cosξ)e−η . (45)

It follows by matching that Ψ31 = 0.

Ψ22 and the swimming velocity

So far we have computed all terms with null conditions on

Ψη at infinity, indicating that the sheet does not swim to the or-

ders considered. We now compute the swimming velocity by

consideration of the calculation of Ψ22. This term is forced by

Ψ10,Ψ11 and Ψ12:

LΨ22 = D
[

DΨ11D∂ξD11−∂ξΨ11D
2
Ψ11

]

−∂ξΨ10D
3
Ψ12. (46)

There is a homogeneous condition on ∂ξΨ22 on η = 0, but

DΨ22

∣

∣

η=0
= −sinξ D

2
Ψ12

∣

∣

η=0
. (47)

We will compute the swimming velocity at this order as in [1,2],

by averaging over ξ and finding 〈DΨ22〉(∞) ≡ U22. The di-

mensionless swimming speed to leading order is therefore Us =
−δ2R−1U22 = −ε2U22.

Averaging and integrating once in η we obtain

D
3〈Ψ22〉= 〈− 1√

2
(sinξ+cosξ)+η sinξ+E)E+cos ξ e−Y sinX〉,

(48)

where E = 1√
2
e−Y (sin+cosX). Thus

D
3〈Ψ22〉 =

1

2
[e−

√
2η − e−Y cosY ]

+
1

2
√

2
ηe−Y (cosY − sinY )+

1

2
e−Y sinY. (49)

Integrating again from infinity,

D
2〈Ψ22〉=− 1

2
√

2
e−

√
2η +

1

2
√

2
e−Y (cosY −sinY )+

1

2
ηe−Y sinY.

(50)

Integrating (50) from 0 to ∞ and using (47) and the fact that

〈sinξ D
2
Ψ12

∣

∣

η=0
〉 = 0 we obtain

U22 = −1

4
+0 +

1

2
=

1

4
. (51)

The swimming speed is found to be Us = − 1
4

ε2, in agreement

with the large R limit of Tuck.

Analysis of II
For the stretching planar sheet we show now that the prob-

lem reduces to an expansion in powers of ε and R−1, so that the

limit of Ψ for large R exists as an expansion in ε. Therefore for

problem II we can compute the inviscid limit of the flow.

To see this we need only note that boundary conditions are

invariant under the passage to inner variables:

Ψ(ξ+ εcosξ,0) = 0,DΨ(ξ+ εcos ξ,0) = εsinξ. (52)

Thus we may define inner and outer expansions by

Ψ ∼ εΨ1 + ε2Ψ2 + . . . (inner), (53)

ψ ∼ R−1/2
[

εψ1 + ε2Ψ2 + . . .
]

(outer). (54)

It is easy to see that

Ψ1 =
1√
2

[

cosξ+ sinξ− e−Y (cosX − sinX)
]

, (55)

ψ1 =
1√
2
(cosξ+ sin ξ)e−η. (56)

Also, since DΨ2(ξ,0) = −cosξ D∂ξD1(ξ,0) = cos2 ξ, we have

〈D3
Ψ2〉 = −〈∂ξΨ1 D

2
Ψ1〉. (57)

Sustituting and integrating once,

〈D2
Ψ2〉 = − 1

2
√

2

[

e−2Y − e−Y (sinY − cosY )
]

. (58)

We therefore obtain

DΨ2(∞)+
1

2
= −1

4
, (59)



yielding a swimming velocity of Us = 3
4
ε2. The result of [2] for

problem II at finite R is

Us =
1

2
ε2

[3F(R)−1

2F(r)

]

. (60)

which agrees in the limit of large R.

Higher-order terms for problem I

Although the expansions in I require that εR1/2 � 1, we

are entitled to make this parameter far larger than R−1/2 . Since

terms with subscripts n0 vanish if n > 1, the terms with subscripts

11,21,31, . . . can be made to dominate. We may think of these

as expansions of DΨ for fixed but small δ of a function of order

R−1/2, with a formal error of order R−1 at large R. In particular

at η = ∞ we should have

〈DΨ〉 ≡U(δ) ∼U1(δ)R−1/2 +U2(δ)R−1 + . . .. (61)

Now we know that for small δ, we have

U1 = O(δ3), U2 = O(δ2) (62)

We claim that U1 must in fact vanish identically and that U2 con-

tains only even powers of δ. Indeed in the primitive dimension-

less form of problem I, the powers of trigonometric functions

are introduced through the nonlinearity of the momentum equa-

tion and through the displacement εsinξ of the boundary. The

powers add under nonlinear interaction. In inner variables the

boundary terms increase the powers of trig functions and of δ
in concert. Consequently Ψmn will contain even powers of trig

functions only if m is even.

To show that U1 = 0 we consider the series in δ of the solu-

tion of the following linear problem:

D
2[

∂ξΨ+D
2
Ψ+δ cosξ DΨ

]

= 0, (63)

∂ξΨ(ξ,η)
∣

∣

η=δsinξ
= δ cosξ, DΨ(ξ,δ sinξ) = 0. (64)

The function Ψ grows like η at ∞, since higher powers corre-

spond to Ψmn with n > 1. We may therefore average (63) with

respect to ξ, integrate by parts with respect to ξ, and integrate

from η = ∞ twice to obtain

D
2〈Ψ〉 = δ〈sinξ ∂ξDΨ〉. (65)

We assume a series solution

Ψ ∼
∞

∑
n=1

δnΨn, η ≥ 0. (66)

where Ψn = Ψn1 in the earlier notation; we have already com-

puted the first three terms of the series. We write the second of

(64) as

DΨ(ξ,0) = −
∞

∑
n=1

1

n!
sinn ξD

n+1
Ψ(ξ,0). (67)

Integrating (65) from 0 to ∞ after making use of (63) we have

U1(δ)−DΨ(ξ,0) = −δ〈sinξ∂ξΨ(ξ,0)〉

= δ〈sinξD
2
Ψ(ξ,0)〉+δ2〈sinξcosξDΨ(ξ,0)〉

= δ〈sinξD
2
Ψ(ξ,0)〉− 1

2
〈sin2 ξD

3
Ψ(ξ,0)〉

+
1

2
δ3〈sin2 ξcosξD

2
Ψ〉. (68)

Continuing in this way, we obtain

U1(δ) = 〈DΨ(ξ,0)〉+
∞

∑
n=1

1

n!
δn〈sinn ξD

n+1
Ψ(ξ,0)〉 = 0, (69)

since this right-hand side is the average of the null condition in

(67).
It follows that we have the following estimate of the error in

the swimming speed for problem I:

Us ∼ −1

4
δ2R−1 +O(δ4R−1)+O(δ2R−3/2), (70)

or in terms of ε and R,

Us ∼−1

4
ε2 +O(ε4R)+O(ε2R−1/2). (71)

The second error term comes from the expansion of Tuck’s result

for large R.



The inviscid problem

We have seen that problems I and II differ fundamentally

in the nature of the inviscid limit. This limit exists and is com-

putable from matched expansions in the case of II, but for prob-

lem I this limit is not accessible by matched expansions. the

reason lies of course in the separation phenomenon, which must

occur at large enough R regardless of the size of ε. If an inviscid

fluid is assumed, a potential flow problem may be solved for I as

an expansion in ε. It is easily shown that the expansion of the

velocity potential in this case, satisfying the tangency condition

at the boundary,

∂φ

∂η
= ε

(

−1 +
∂φ

∂ξ

)

cosξ, η = εsinξ. (72)

is

φ = εe−η cosξ+
1

2
ε2e−2η sin2ξ+ . . .. (73)

Here φ is in units ω/k2. This corresponds in dimensional

units to a kinetic energy ρ(ωb)2/(4k) per unit length of sheet.

D’Alembert’s paradox of zero pressure drag eliminates the pos-

sibility of swimming in an inviscid fluid. For problem II, more-

over, the fluid is not disturbed at all by the stretching sheet. Since

the inviscid limit exists in that case, we have an excellent exam-

ple of the inviscid limit of a flow being distinct from the corre-

sponding flow of an inviscid fluid.

Recoil locomotion of a sheet

Saffman [4] has discussed swimming of a deformable fi-

nite body in an inviscid fluid. This can occur from the rela-

tive movements of the center of volume of a body, and its cen-

ter of mass (including the virtual mass of the fluid). We dis-

cuss now a related problem of a deforming sheet in two dimen-

sions. Consider two massless sheets, mirror symmetric with

respect to the x-axis, the upper sheet having the equation y =
2b +b sin(ωt +θ) sin

(

k(x−X (t))
)

≡ Y (x, t), where we include

an arbitrary phase θ. Fluid occupies the domain |y| > Y (x, t).
On the line y = 0 we place small bodies of mass m at posi-

tions x = xn(t) = 2πn/k + X (t) = L sin2ωt,n = 0,±1,±2, . . ..
The machinery moving the masses is assumed to be attached

to the sheets. As the masses move back and forth, the sheets

move by recoil in the presence of the varying virtual mass of the

fluid, and swimming can result. The function X (t) tracks the

x-coordinate of a point on a sheet.

To compute the swimming speed we assume that the sys-

tem is started from rest, so that total momentum of fluid and

masses per unit length of sheet must remain zero. Assuming

again bk = ε � 1, the dimensional potential to first order is

−Ẋ b sin(ωt + θ)e−ky cos(x−X ). This yields the kinetic energy

πρẊ
2b2 sin2(ωt +θ) over one wavelength of sheet, allowing for

the fluid on both sides of the body. The virtual mass of the fluid

is therefore

M(t) = 2πρb2 sin2(ωt +θ). (74)

Conservation of momentum then implies

m(Ẋ +2ωLcos2ωt)+ Ẋ M(t) = 0, (75)

or

Ẋ =
2ωmLcos2ωt

m+πρb2[1− cos2(ωt +θ)]
. (76)

The dimensionless form of this expression is

Ẋ
∗
τ =

−2L∗ cos2(τ−θ)

1 + πε2

m∗ (1− cos2τ)
, (77)

where τ = ωt,X
∗
τ = Ẋ k/ω,L∗ = kL and m∗ = mk2/ρ. Assuming

L∗,m∗ are order unity the leading term of the expansion in ε of

the swimming velocity is, averaging over time,

ω

k
Us = −π

L∗

m∗ cos2θε2. (78)

We thus get a swimming velocity through recoil which is com-

parable to that achieved in Stokes flow, at least for the order of

the parameters we have assumed.

Recoil swimming in a viscous fluid

In a ongoing collaboration with Tadashi Tokieda we are ad-

dressing the following question: what happens when the inviscid

model of this section is placed in a viscous fluid? Diffusion of

momentum to infinity is then possible, but the expansion meth-

ods of the present paper can be used. Tentative results indicate

that, in the case L∗ = O(ε), a swimming speed of order ε3
√

R

results, indicating that viscosity actually increases the velocity

above the inviscid case. This result, along with an application

of matched asymptotic expansions to recoil swimming in two di-

mensions, will be reported elsewhere.

Discussion
The purpose of this investigation has been to clarify the na-

ture of the of the high Reynolds number limit of the problem of

the swimming sheet as formulated by G.I. Taylor [1]. In this limit

the problem is characterized by the formation of boundary layers,



and in the case of a propagating wave of amplitude b (problem

I), straightforward analysis of the problem is possible, but only if

the boundary layer thickness is large compared to the wave am-

plitude. This dictates our expansion in small δ in place of the

small ε expansion of Tuck [2]. For a wave of stretching on a

planar sheet (problem II), no such assumption is necessary and a

boundary-layer limit exists. This represents one of the few prob-

lems in locomotion which can be essentially completely solved

at any Reynolds number.
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