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ABSTRACT

The swimming of a sheet, originally treated by G.I. Taylor
(1951) for the case of Stokes flow, is considered at moderate and
high Reynolds numbers using matched asymptotic expansions. It
is shown that for propagating waves with frequency ®, wavenum-
ber k, and amplitude b, the swimming speed must be deduced
from a dual expansion in powers of the small parameters bkR'/?
and R’l/z, where R = V—(l?z is the Reynolds number. The result
of Tuck (1968) for the leading term of the swimming velocity is
recovered, and higher-order results are given. For the case of
a planar; stretching sheet, the expansion is in powers of bk and
R 2 and a limit for large R is obtained as a boundary layer.
We contrast these results with the inviscid case, where no swim-
ming is possible. We also consider briefly the application of these
ideas to “recoil swimming”, wherein the movements of the cen-
ter of mass and center of volume of a body allow swimming at
both finite and infinite Reynolds numbers.

INTRODUCTION

In his seminal paper on the swimming of micro-organisms
[1], G.I. Taylor showed how waves on a two-dimensional sheet
could cause the sheet to move, i.e. “swim”, relative to the fluid
at infinity. Taylor assumed the fluid dynamics of Stokes flow, but
his results were extended by Tuck [2] to arbitrary finite Reynolds
number. For the case of a progressive wave of amplitude b, wave
number k, and phase velocity ¢, Tuck obtained, by expansion in
the small parameter bk, the leading term
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for the swimming velocity, where F = R[V1+iR] =

2\1/291/2
[% and R = % is a Reynolds number based on the

properties of the wave. This swimming velocity has a finite limit
—1¢(kb)? as R — oo. The rate of dissipation per unit area of sheet
increases with R as v/R, and in fact the velocity near the sheet is
of order bk+/R for large R, so it is clear that Tuck’s result should
be regarded as asymptotic in bk for fixed R, and not uniformly
valid in the limit of large R. The purpose of the present paper
is to attempt to clarify the nature of the approximation at large
R using the techniques of matched asynmptotic expansions. We
apply this approach to various cases considered by Taylor, and
also consider analogous results for a perfect fluid.

FORMULATION

Since we shall be dealing with a nonlinear problem, we re-
strict attention to two of the problems studied by Taylor [1]. The
first (I) is a progressive wave of shape on a two-dimensional
elastic sheet, the equation of the boundary being y = y,(x) =
bsin(kx— ot ),x; = x, bk < 1, each point on the sheet oscillating
in the vertical. The second (II) is a progressive wave of stretch-
ing on a flat sheet. Here the Lagrangian coordinates of a point on
the sheet with initial position xo +asin(kxp),yo = 0, ak < 1 are
given by x;, == xo + cos(kxop — t),y; = 0. The streamfunction
for the fluid flow, y(x,y,1), (u,v) = (¥, —y,) being the velocity
field, satisfies the two-dimensional Navier-Stokes equation

ot — = —— — vV = 0. 2)




The fluid occupies the domain above the surface of the sheet. We
assume tha , and \, vanish as y — oo, i.e. the flow is at most a
uniform flow in the x-direction at y = +oo. On the sheet surface
the no-slip condition prevails:

u(xg,vs,1) = 0,v(xy,y5,1) = —bocos(kxs —or) (I)  (3)

at a point (xs,ys), where y; = bsin(kx; — @t),x; = x for problem
I. For problem II

u(xs,ys,t) = ao‘)Sin(ka - Cl)t), v(xs,ys,t) = 0 (II) (4)

with x; = x + acos(kx; — ¢) = 0,y, = 0 and |ak| < 1. Passing
to the dimensionless variables (§,1) = (kx — wt, ky), P(€,n) =
(k> /w)y(x,y,t) we have the following problem in &, n:
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We (&, esink) =ecosE, Wy (&, esing) =0 (I), (6)

We (E+ecos,0) =0, Py(E+ecosE,0) =esing (). (7)

2 2 .
Here V2 = a% + 82]—2,8 = bk (I),= ak (1), and R = 2; is the
Reynolds number. In our analysis € will be small and the ex-
act problem will be replaced by the construction of asymptotic
expansions defined on the half-space n > 0.

The direct calculation for |
To indicate the approach of Tuck [2] for problem I, we ex-
pand in &:

P(E,m:e,R) = eR[W1(M:R)e ]

+€2 %5 (N, R) +ER[Pr (M, R)e 5] + O(e3). (3)

Here ¥ is the leading solution of a linear problem, ¥, is the
zero-mean component of the second-order term generated by the
nonlinearities, and Wy is a real-valued average over & of the
second-order term. The negative of the swimming velocity is
equal to the limit of B‘g’_nzo for large 1. The nonlinearities come
from two sources, the first being the inertial terms of (5), the
second, restricted to problem I, being the displacement €sin& of
the boundary from the horizontal.

Now ¥ satisfies the following linear problem:

i(D*—1)¥) — %(D2 —1)2¥, =0, ©)
. ad¥ B
(E0) =i, GHE0) =0, (10)
where D = d/dn. The solution is
\Iﬁ:%[fe*“—e*f“],f:(1+iR>1/2- (11)

We note that, after substituting ¥ at this order into (5), Wy is
found to satisfy
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—(f+ e (F+ D), (12)

where f* is the complex conjugate of f and (-) denotes the &-
average. The second source of nonlinearity comes into play in
the boundary conditions on Wy:

DW1(0) = —(sinER[e *D*W¥}]), D*Py(0) =0.  (13)

Integration of (12) and the boundary conditions then yields

D¥ao(es) = ~Uy = 3 (F+ 1)+ 511+ 112

7 1
xsi[(Hf*)z — (14)

Some manipulation of this last expression using f>+ f *2—2 and
ff*=2F?—1yields (1).

It should be noted from (11) that when R is large the term
e~ /M decays like e "V R/2. indicating a boundary-layer structure
of thickness O(R~!/2) relative to the wavelength.

Analysis of | for large R using matched expansions

We now consider simultaneously the two assumptions of
small € and large R. The boundary-layer structure referred to
above suggests that the direct perturbational approach has im-
plicitly assumed that €R 1/2 « 1. We shall now verify this and in-
troduce asymptotic expansions in powers of 8 = eR'/2 and R~'/2.



The inner expansion
To study the structure of the flow near the sheet at large R it
is natural to introduce the inner variables

¥ =R'?y 7 =R". (15)

If (5) is expressed in these inner variables, the % factor of the
viscous stress term is expelled from the leading term and V¥ is
replaced by R'/2 (BZW— R™'Wg;). Taking the limit as R — oo in
these variables yields the inner limit of (5):

D'V, + DYDY ~-F: DY -DF=0.  (I6)

Here D = % The conditions at the sheet for the inner limit of I
are

¢§:8cos§, Wy =0, 7 = 3sin&. 17

Thus only J survives as a parameter; this new expansion param-
eter is a measure of the wave amplitude relative to the boundary-
layer thickness. The inner limit may thus be constructed as an ex-
pansion for small §, and the inner expansion may be developed as
a double expansion in & and R™'/2 Inthe representation of these
terms it will be helpful to assign an ordering of R 12 equal to
0(8), so that Nth-order terms will will be of order §”R~"/? with
m+n = N. The corresponding term of the inner expansion will
be ¥,,,. Note the subscripts used in (8) have a different mean-
ing. Note also that we must allow for a possible but hidden de-
pendence of every term on the two parameters, corresponding to
terms of order intermediate between powers, often consisting of
logarithmic factors. In fact for the terms considered below we
will not encounter these intermediate orders.

The inner expansion thus takes the form

Y o¥8+ 8R71/2¢11 + [82R71/2¢21 + 8R71¢12

+ [SZR*IEZ +8RPW 5+ 8R!V W5+ 0(8).  (18)

Note that there is no term ¥y, nor terms ¥y, or ¥, for n > 1.
The leading term is

@10 = sin&. (19)

The outer expansion
As in conventional boundary-layer theory, we postulate the
outer expansion as a series of harmonic functions, to which the
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Figure 1. Terms of the inner and outer expansions for problem | needed
to compute the leading term for swimming velocity. Heavy dashed line
indicated forcing by nonlinearity of the equations. Light dashed lines indi-
cate forcing through the boundary conditions. Solid lines indicate match-
ing conditions are determining.

boundary-layer structure must decay, and with which it must
match. The outer expansion will have a form similar to the inner
expansion:

R/ ~ Y00+ 8R71/2‘P11 + [82R71/2T21 + 8R71‘P12

+ [SZR’“PZZ +8RPW s+ 8R! PW5 1+ 0(8).  (20)

Eote the factor of R'/2 in the left. The term ¥, o matches with
W0, in the sense that

lim ¥jp = lim ¥ 21
n T]~>0

T]~>m

In general, however, matching must occur in an intermediate
overlap region where limits are taken with a variable of the form
Mo = RN, 0 < a < 1/2 held fixed [3].

We therefore have W19 = sin€e . The inner expansion of
Wy is sing[1 — R~/>q 4+ O(R™")]. The O(R~'/?) part matches
with @11 .

In preparation for the derivation of subsequent terms, we
show in figure 1 a matching a diagram illustrating the relations
between terms of the inner and outer expansions.

¥, and ¥
Now W satisfies the following homogeneous linear prob-
lem:

D’3:¥), +D'¥y = LP; =0, (22)

Y11£(8,0) = D¥11(£,0) = 0. (23)



The solution, behaving like —1sin& for large M, is

¥ = —Tsing — %e’y (sinX +cosX) + %(siné—l—cos&).
(24)

Here and elsewhere we will use the notation
Y =T/V2, X =§+7/V2. (25)

We can thus see the origin of ¥ij, to match with the terms
%(sin&—l—cos&) in (24):

¥ = L(sin&—l—cos&)e’n. (26)

V2

The 21 and 12 terms - _
The term W21 comes from the advection of ¥1; by W9, and
satisfies

L% = —cosE D'y, Q27
with
Waig + DI Py sing =0, DWoy +D Py sinE =0 (28)
when T = 0. Integration and the conditions at infinity yield
9eW1 + D" Py = —cost DYy (29)
We then obtain
Y, = —% cos2& —sin€ e ¥ sinX. (30)
Matching then yields

1
Y, = —50032§ e M, (31)

The term P is forced by an O(R™!) term in the equation
in inner variables, satisfying

LY, = —82?10 = cos&, (32)

together with homogeneous conditions on N = 0, and matching
with the inner expansions of W19 and ¥;; . Itis given by

il
V2

Matching then gives us the outer term

Y= %nz sin& — —=(sin +cos&) —e ¥ cosX +cosE. (33)

Wi, =cos&e M. (34)

The 31 and 13 terms
Similarly, W3; solves

L¥31 = —cosE D Py, (35)
with
D¥; = —%53¢11 sin? & — D%, sin& (36)
and
9P = — %Bza&u sin?€ — DI ¥y sing  (37)
onT = 0. A particular solution of (35) is

— 1
P, = Wi cos2E ¢ ¥ (sinX —cos X). (38)

We note that

_ 1 1
D‘Pgl im0 = 2 cos& cos2€ = 3 (cos3E+cos&), (39)

_ 3 1
agpg’l ’ﬁ:o = m(sin?ﬁé—l—cos 3E) + m(sin& —cos&). (40)

On the other hand the right-hand side of (36) equals %(cos 3¢ —
cos&), and that of (37) equals 83% (sin3&+cos3E) — SIW (sin&+

3cos&). Thus we have, adding the requisite solution of the ho-
mogeneous equation,

— 1
W3 = P4, + ——=e Y(cosX —sinX). (41)

4v2

The term ;3 is required to match with the appropriate terms
of the inner expansions of Wy, j =0, 1,2, and is forced by linear
terms involving W¥;;. The equation is

[¥)3 = (3 +252)a§¢11. (42)

The boundary conditions are homogeneous. A particular solu-
tion is

v, = %ﬁe’Y cosX + Lﬁz(siné—l-cosg) — éﬁ3 sin&, (43)

2V/2



and to satisfy the condition on DW¥13(,0) as well as match with
¥, we have

— — 1 1
P35 =P+ ——=¢ Y (sinX —cos X) —Tcos&— ——(sin&—cos&).

2V2 2V2
(44)
Thus

1
W3 = ———(sin& —cos&)e M.

4
NG (45)

It follows by matching that W3; = 0.

¥,, and the swimming velocity

So far we have computed all terms with null conditions on
Wy at infinity, indicating that the sheet does not swim to the or-
ders considered. We now compute the swimming velocity by
consideration of the calculation of ¥5,. This term is forced by
lPl(),lPll and lPu:

LYy =D [D‘PHDaéDu — E)é‘PuD lPH] — aélpl()D Y. (46)
There is a homogeneous condition on 8@@22 onn =0, but
47)

sz ’ﬁ:o = — sinZ:, 52@12 ’ﬁ:O'

We will compute the swimming velocity at this order as in [1,2],
by averaging over & and finding (D¥p)(e0) = Uy. The di-
mensionless swimming speed to leading order is therefore Uy =
—82R71U22 = —SZUZZ.

Averaging and integrating once in 1| we obtain

D (@) = <—L(sin§+cos§)+ﬁ sinE+E)E+cosEe Y sinX),

V2
(48)
where E = \/Lze’y (sin4cosX). Thus
13— 1 —
D (W) = E[e"/En —e Y cosY]
+ l o Y (cosY —sinY) + Lor sinY (49)
——=Te - —e :
22" 2

Integrating again from infinity,

— — = 1 1
D (W) =— eV p Y (cosY —sinY )+ Eﬁe’Y sinY.

1
242 242
(50)

Integrating (50) from O to oo and using (47) and the fact that
(sin D", ’ﬁ:0> =0 we obtain

Up— 20412t
2=y 2 4

&1Y)
The swimming speed is found to be Uy = —%82, in agreement
with the large R limit of Tuck.

Analysis of Il

For the stretching planar sheet we show now that the prob-
lem reduces to an expansion in powers of € and R~!, so that the
limit of ¥ for large R exists as an expansion in €. Therefore for
problem II we can compute the inviscid limit of the flow.

To see this we need only note that boundary conditions are
invariant under the passage to inner variables:

Y(E+ecos&,0) = 0,D¥(E +ecos&,0) = esiné. (52)
Thus we may define inner and outer expansions by
¥ ~ &P +e*F, 4 ... (inner), (53)
y~R 12 [ey +&2W) +.. -] (outer). (54)
Itis easy to see that
— 1 . .
Y, = —2[cos&—l—sm&—e,y(cosX—sz)], (55)
1 . _
Y1 = —(cos&+sin&)e M. (56)

V2

Also, since D¥3(€,0) = — cos& DD (§,0) = cos’&, we have

D'T,) = —(0:F, D'F)). (57)
Sustituting and integrating once,
<52¢2> = —ﬁ [e® —e ¥ (sinY —cosY)].  (58)
We therefore obtain
DPs(eo) + 5 =~ (59)



yielding a swimming velocity of Us = %82. The result of [2] for
problem II at finite R is

3F(R) -1

1 2
U= 2 [55r 0

]. (60)

which agrees in the limit of large R.

Higher-order terms for problem |

Although the expansions in I require that eR'? < 1, we
are entitled to make this parameter far larger than R~'/2. Since
terms with subscripts n0 vanish if n > 1, the terms with subscripts
11,21,31,... can be made to dominate. We may think of these
as expansions of DY for fixed but small 8 of a function of order
R~1/2, with a formal error of order R~! at large R. In particular
at 1| = oo we should have

(DY) =U@) ~U (R + ()R ' +....  (61)
Now we know that for small 8, we have
Uy =0(8), Uy=0(&) (62)

We claim that U; must in fact vanish identically and that U; con-
tains only even powers of 8. Indeed in the primitive dimension-
less form of problem I, the powers of trigonometric functions
are introduced through the nonlinearity of the momentum equa-
tion and through the displacement €sin& of the boundary. The
powers add under nonlinear interaction. In inner variables the
boundary terms increase the powers of trig functions and of §
in concert. Consequently ¥,,, will contain even powers of trig
functions only if m is even.

To show that U; = 0 we consider the series in 8 of the solu-
tion of the following linear problem:

D’[9:¥ +D°F + 8 cos& DP] =0, (63)

0P (EM) | sgine = OcosE, DP(E,8sinf) =0.  (64)

The function ¥ grows like 7 at oo, since higher powers corre-
spond to W,,, with n > 1. We may therefore average (63) with
respect to &, integrate by parts with respect to &, and integrate
from M = oo twice to obtain

D*(¥) = 8(sin& 3. DP). (65)

We assume a series solution

Y~ ) 8%, 720 (66)
n=1

where ¥, = ¥, in the earlier notation; we have already com-
puted the first three terms of the series. We write the second of
(64) as

=)

DY(E,0)=-Y %sin” eD" P (E,0). (67)

n=1
Integrating (65) from 0 to oo after making use of (63) we have

U1(8) —D¥(&,0) = —8(sin&d: ¥ (&, 0))
= 5(sinED"P(&,0)) + 8% (sin& cos EDP(E, 0))

— 5(sinED B (E, 0)) — % (sin EDYT(E, 0))

1 _
+§83 (sin?&cos §D2T>. (68)
Continuing in this way, we obtain

U1(3) = (D®(5,0)) + ., -8 (sin €D"* H(5,0)) =0, (69)
n=1""

since this right-hand side is the average of the null condition in
(67).

It follows that we have the following estimate of the error in
the swimming speed for problem I:

1
Uy ~ —ZSZR’l +0(8*R™") +0(8*R73/?), (70)
or in terms of € and R,
1
Uy ~ _Zgz +0(e*R) + O(2R71/?). (71)

The second error term comes from the expansion of Tuck’s result
for large R.



The inviscid problem

We have seen that problems I and II differ fundamentally
in the nature of the inviscid limit. This limit exists and is com-
putable from matched expansions in the case of II, but for prob-
lem I this limit is not accessible by matched expansions. the
reason lies of course in the separation phenomenon, which must
occur at large enough R regardless of the size of €. If an inviscid
fluid is assumed, a potential flow problem may be solved for I as
an expansion in €. It is easily shown that the expansion of the
velocity potential in this case, satisfying the tangency condition
at the boundary,

00 a0 o

ﬁ—e(—l—l-x) cos&, m=esink. (72)
is

o =¢ee Ncos&E+ %eze*m sin2&+ .. .. (73)

Here ¢ is in units ®/k*>. This corresponds in dimensional
units to a kinetic energy p(wb)?/(4k) per unit length of sheet.
D’ Alembert’s paradox of zero pressure drag eliminates the pos-
sibility of swimming in an inviscid fluid. For problem II, more-
over, the fluid is not disturbed at all by the stretching sheet. Since
the inviscid limit exists in that case, we have an excellent exam-
ple of the inviscid limit of a flow being distinct from the corre-
sponding flow of an inviscid fluid.

Recoil locomotion of a sheet

Saffman [4] has discussed swimming of a deformable fi-
nite body in an inviscid fluid. This can occur from the rela-
tive movements of the center of volume of a body, and its cen-
ter of mass (including the virtual mass of the fluid). We dis-
cuss now a related problem of a deforming sheet in two dimen-
sions. Consider two massless sheets, mirror symmetric with
respect to the x-axis, the upper sheet having the equation y =
2b+ bsin(or +0) sin (k(x — X(r))) =Y (x,t), where we include
an arbitrary phase 6. Fluid occupies the domain |y| > ¥ (x,?).
On the line y = 0 we place small bodies of mass m at posi-
tions x = x,,(t) = 2nn/k+ X(¢t) = Lsin20¢,n = 0,+1,£2,....
The machinery moving the masses is assumed to be attached
to the sheets. As the masses move back and forth, the sheets
move by recoil in the presence of the varying virtual mass of the
fluid, and swimming can result. The function X(¢) tracks the
x-coordinate of a point on a sheet.

To compute the swimming speed we assume that the sys-
tem is started from rest, so that total momentum of fluid and
masses per unit length of sheet must remain zero. Assuming
again bk = € < 1, the dimensional potential to first order is
—Xbsin(ot + 0)e ™ cos(x — X). This yields the kinetic energy

TpX2b? sin?(or + 0) over one wavelength of sheet, allowing for
the fluid on both sides of the body. The virtual mass of the fluid
is therefore

M(t) = 2mpb*sin’ (wr +6). (74)
Conservation of momentum then implies
m(X +20Lcos20t) +XM(t) =0, (75)

or

- 2mmL cos2wt
-~ m+7pb[1 —cos2(wt +0)]

(76)

The dimensionless form of this expression is

poan —2L*cos2(t—0)
1+ (1 —cos2t)’

m*

(77)

where T = ¢, X; = Xk/®,L* = kL and m* = mk?* /p. Assuming
L*,m* are order unity the leading term of the expansion in € of
the swimming velocity is, averaging over time,

*

® L
—U, = —t— cos20¢?. (78)
k m*

We thus get a swimming velocity through recoil which is com-
parable to that achieved in Stokes flow, at least for the order of
the parameters we have assumed.

Recoil swimming in a viscous fluid

In a ongoing collaboration with Tadashi Tokieda we are ad-
dressing the following question: what happens when the inviscid
model of this section is placed in a viscous fluid? Diffusion of
momentum to infinity is then possible, but the expansion meth-
ods of the present paper can be used. Tentative results indicate
that, in the case L* = O(g), a swimming speed of order £3\/R
results, indicating that viscosity actually increases the velocity
above the inviscid case. This result, along with an application
of matched asymptotic expansions to recoil swimming in two di-
mensions, will be reported elsewhere.

Discussion

The purpose of this investigation has been to clarify the na-
ture of the of the high Reynolds number limit of the problem of
the swimming sheet as formulated by G.I. Taylor [1]. In this limit
the problem is characterized by the formation of boundary layers,



and in the case of a propagating wave of amplitude b (problem
I), straightforward analysis of the problem is possible, but only if
the boundary layer thickness is large compared to the wave am-
plitude. This dictates our expansion in small 8 in place of the
small € expansion of Tuck [2]. For a wave of stretching on a
planar sheet (problem II), no such assumption is necessary and a
boundary-layer limit exists. This represents one of the few prob-
lems in locomotion which can be essentially completely solved
at any Reynolds number.
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