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Chapter 1

The fluid continuum

This course will deal with a mathematical idealization of common fluids such as
air or water. The main idealization is embodied in the notion of a continuum
and our “fluids” will generally be identified with a certain connected set of points
in RN , where we will consider dimension N to be 1,2, or 3. Of course the fluids
will move, so basically our subject is that of a moving continuum.

This description is an idealization which neglects the molecular structure of
real fluids. Liquids are fluids characterized by random motions of molecules on
the scale of 10−7 − 10−8 cm, and by a substantial resistance to compression.
Gases consist of molecules moving over much larger distances, with mean free
paths of the order of 10−3 cm, and are readily compressed. Both liquids and
gases will fall within the scope of the theory of fluid motion which we will develop
below. The theory will deal with observable properties such as velocity, density,
and pressure. These properties must be understood as averages over volumes
which contains many molecules but are small enough to be “infinitesimal” with
respect to the length scale of variation of the property. We shall use the term
fluid parcel to indicate such a small volume. The notion of a particle of fluid
will also be used, but should not be confused with a molecule. For example,
the time rate of change of position of a fluid particle will be the fluid velocity,
which is an average velocity taken over a parcel and is distinct from molecular
velocities. The continuum theory has wide applicability to the natural world,
but there are certain situations where it is not satisfactory. Usually these will
involve small domains where the molecular structure becomes important, such
as shock waves or fluid interfaces.

1.1 Eulerian and Lagrangian descriptions

Let the independent variables (observables) describing a fluid be a function of
position x = (x1, . . . , xN) in Euclidean space and time t. Suppose that at
t = 0 the fluid is identified with an open set S0 of RN . As the fluid moves,
the particles of fluid will take up new positions, occupying the set St at time
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4 CHAPTER 1. THE FLUID CONTINUUM

t. We can introduce the map Mt,S0 → St to describe this change, and write
MtS0 = St. If a = (a1, . . . , aN) is a point of S0, we introduce the function
x = X (a, t) as the position of a fluid particle at time t, which was located at
a at time t = 0. The function X (a, t) is called the Lagrangian coordinate of
the fluid particle identified by the point a. We remark that the“coordinate” a

need not in fact be the initial position of a particle, although that is the most
common choice and will be generally used here. But any unique labeling of the
particles is acceptable.1

The Lagrangian description of a fluid emerges from this focus on the fluid
properties associated with individual fluid particles. To “think Lagrangian”
about a fluid, one must move with the fluid and sample the fluid properties in
each moving parcel. The Lagrangian analysis of a fluid has certain conceptual
and mathematical advantages, but it is often difficult to apply to useful exam-
ples. Also it is not directly related to experience, since measurements in a fluid
tend to be performed at fixed points in space, as the fluid flows past the point.

If we therefore adopt the point of view that we will observe fluid properties
at a fixed point x as a function of time, we must break the association with a
given fluid particle and realize that as time flows different fluid particles will
occupy the position x. This will make sense as long as x remains within the
set St. Once properties are expressed as functions of x, t we have the Eulerian
description of a fluid. For example, we might consider the fluid to fill all space
and be at rest “at infinity”. We then can consider the velocity u(x, t) at each
point of space, with lim|x|→∞ u(x, t) = 0. Or, we might have a fixed rigid
body with fluid flowing over it such that at infinity we have a fixed velocity
U. For points outside the body the fluid velocity will be defined and satisfy
lim|x|→∞ u(x, t) = U.

It is of interest to compare these two descriptions of a fluid and understand
their connections. The most obvious is the meaning of velocity: the definition
is

xt =
∂X
∂t

∣

∣

∣

a
= u(x(a, t), t). (1.1)

That is to say, following the particle we calculate the rate of change of posi-
tion with respect to time. Given the Eulerian velocity field, the calculation of
Lagrangian coordinates is therefore mathematically equivalent to solving the
initial-value problem for the system (1.1) of ordinary differential equations for
the function x(t), with the initial condition x(0) = a, the order of the system
being the dimension of space. The special case of a steady flow leads to a system
of autonomous ODEs.

Example 1.1: In two dimensions (N = 2), with fluid filling the plane, we
take u(x, t) = (u(x, y, t), v(x, y, t)) = (x,−y). This velocity field is independent
of time, hence we call it a steady flow. To compute the Lagrangian coordinates
of the fluid particle initially at a = (a, b) we solve:

∂x

∂t
= x, x(0) = a,

∂y

∂t
= −y, y(0) = b, (1.2)

1We shall often use (x, y, z) in place of (x1, x2, x3), and (a, b, c) in place of (a1, a2, a3).
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Figure 1.1: Stagnation-point flow

so that X = (aet, be−t). Note that, since xy = ab, the particle paths are hyper-
bolas; the curves independent of time, see figure 1.1. If we consider the fluid in
y > 0 only and take y = 0 as a rigid wall, we have a flow which is impinging
vertically on a wall. The point x = y = 0, where the velocity is zero, is called
a stagnation point. This point is a hyperbolic point relative to particle paths.
A flow of this kind occurs at the nose of a smooth body placed in a uniform
current. Because this flow is steady, the hyperbolic particle paths are also called
streamlines.

Example 1.2: Again in two dimensions, consider (u, v) = (y,−x). Then
∂x
∂t

= y and ∂y
∂t

= −x. Solving, the Lagrangian coordinates are x = a cos t +
b sin t, y = −a sin t + b cos t, and the particle paths (and streamlines) are the
circles x2 + y2 = a2 + b2. The motion on the streamlines is clockwise, and fluid
particles located at some time on a ray x/y =constant remain on the same ray
as it rotates clockwise once for every 2π units of time. This is sold-body rotation.

Example 1.3: If instead (u, v) = (y/r2,−x/r2), r2 = x2+y2 , we again have
particle paths which are circles, but the velocity becomes infinite at r = 0. This
is an example of a flow representing a point vortex. We shall take up the study
of vortices in chapter 3.

1.1.1 Particle paths, instantaneous streamlines, and streak

lines

The present considerations are kinematic, meaning that we are assuming knowl-
edge of fluid motion, through an Eulerian velocity field u(x, t) or else Lagrangian
coordinates x = X (a, t), irrespective of the cause of the motion. One useful
kinematic characterization of a fluid flow is the pattern of streamlines, as al-
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Figure 1.2: Particle path and streak line in example 1.4.

ready mentioned in the above examples. In steady flow the streamlines and
particle paths coincide. In an unsteady flow this is not the case and the
only useful recourse is to consider instantaneous streamlines, at a particular
time. In three dimensions the instantaneous streamlines are the orbits of the
u(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) at time t. These are the integral
curves satisfying

dx

u
=
dy

v
=
dz

w
. (1.3)

As time flows these streamlines will change in an unsteady flow, and the con-
nection with particle paths is not obvious in flows of any complexity.

Visualization of flows in water is sometimes accomplished by introducing dye
at a point in space. The dye can be thought of as labeling by color the fluid
particle found at the point at a given time. As each point is labeled it moves
along its particle path. The resulting streak line thus consists of all particles
which at some time in the past were located at the point of injection of the
dye. To describe a streak line mathematically we need to generalize the time
of initiation of a particle path. Thus we introduce the generalized Lagrangian
coordinate x = X (a, t, ta), defined to be the position at time t of a particle that
was located at a at time ta. A streak line observed at time t > 0, which was
started at time t = 0 say, is given by x = X (a, t, ta), 0 < ta < t. Particle paths,
instantaneous streamlines, and streak lines are all distinct objects in unsteady
flows.

Example 1.4: Let (u, v) = (y,−x + ε cosωt). For this flow the instan-
taneous streamlines satisfy dx/y = dy/(−x + ε cosωt) and so are the circles
(x− ε cosωt)2 + y2 = constant. The generalized Lagrangian coordinates can be
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obtained from the general solution of a second-order ODE and takes the form

x = − ε

ω2 − 1
cosωt+A cos t+B sin t, y =

εω

ω2 − 1
sinωt+B cos t−A sin t, (1.4)

where

A = −b sin ta +
εω

ω2 − 1
sinωta sin ta + a cos ta +

ε

ω2 − 1
cosωta cos ta, (1.5)

B = a sin ta + b cos ta −
ε

ω2 − 1
cosωta sin ta +

εω

ω2 − 1
sinωta cos ta. (1.6)

The particle path with ta = 0, ω = 2, ε = 1 starting at the point (2, 1) is given
by

x = −1

3
cos 2t+ sin t+

7

3
cos t, y = cos t− 7

3
sin t+

2

3
sin 2t, (1.7)

and is shown in figure 1.2(a). All particle paths are closed curves. The streak
line emanating from (2,1) over the time interval 0 < t < 2π is shown in figure
1.2(b).

This last example is especially simple since the 2D system is linear and
integrable explicitly. In general two-dimensional unsteady flows and three-
dimensional steady flows can exhibit chaotic particle paths and streak lines.

Example 1.5: A nonlinear system exhibiting this complex behavior is the
oscillating point vortex: (u, v) = (y/r2,−(x−ε cosωt)/r2). We show an example
of particle path and streak line in figure 1.3.

1.1.2 The Jacobian matrix

We will, with a few obvious exceptions, be taking all of our functions as in-
finitely differentiable wherever they are defined. In particular we assume that
Lagrangian coordinates will be continuously differentiable with respect to the
particle label a. Accordingly we may define the Jacobian of the Lagrangian map
Mt by matrix

Jij =
∂xi
∂aj

∣

∣

∣

t
(1.8)

Thus dli = Jijdaj is a differential vector which can be visualized as connecting
two nearby fluid particles whose labels differ by daj.

2 If da1 · · ·daN is the volume
of a small fluid parcel, then Det(J)da1 · · ·aN is the volume of that parcel under
the map Mt. Fluids which are incompressible must have the property that all
fluid parcels preserve their volume, so that Det(J)= constant=1 when a denotes
initial position, independently of a, t. We then say that the Lagrangian map
is volume preserving. For general compressible fluids Det(J) will vary in space
and time.

Another important assumption that we shall make is that the map Mt is
always invertible, Det(J)> 0. Thus when needed we can invert to express a as
a function of x, t.

2Here and elsewhere the summation convention is understood: unless otherwise started
repeated indices are to be summed from 1 to N .
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Figure 1.3: The oscillating vortex, ε = 1.5, ω = 2.

1.2 The material derivative

Suppose we have some scalar property P of the fluid that can be attached to a
certain fluid parcel, e.g. temperature or density. Further, suppose that, as the
parcel moves, this property is invariant in time. We can express this fact by the
equation

∂P
∂t

∣

∣

∣

a
= 0, (1.9)

since this means that the time derivative is taken with particle label fixed, i.e.
taken as we move with the fluid particle in question. We will say that such
an invariant scalar is material. A material invariant is one attached to a fluid
particle. We now asked how this property should be expressed in Eulerian
variables. That is, we select a point x in space and seek to express material
invariance in terms of properties of the fluid at this point. Since the fluid is
generally moving at the point, we need to bring in the velocity. The way to
do this is to differentiate P(x(a, t), t), expressing the property as an Eulerian
variable, using the chain rule:

∂P(x(a, t), t)

∂t

∣

∣

∣

a
= 0 =

∂P
∂t

∣

∣

∣

x
+
∂xi
∂t

∣

∣

∣

a

∂P
∂xi

∣

∣

∣

t
= Pt + u · ∇P. (1.10)
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In fluid dynamics the Eulerian operator ∂
∂t

+u·∇ is called the material derivative
or substantive derivative or convective derivative. Clearly it is a time derivative
“following the fluid”, and translates the Lagrangian time derivative in terms of
Eulerian properties of the fluid.

Example 1.6: The acceleration of a fluid parcel is defined as the material

derivative of the velocity u. In Lagrangian variables the acceleration is ∂2
x

∂t2

∣

∣

∣

a
,

and in Eulerian variables the acceleration is ut + u · ∇u.
Following a common convention we shall often write

D

Dt
≡ ∂

∂t
+ u · ∇, (1.11)

so the acceleration becomes Du/Dt.

Example 1.7: We consider the material derivative of the determinant of the
Jacobian J. We may divide up the derivative of he determinant into a sum of
N determinants, the first having the first row differentiated, the second having
the next row differentiated, and so on. The first term is thus the determinant
of the matrix











∂u1

∂a1

∂u1

∂a2
· · · ∂u1

∂aN

∂x2

∂a1

∂x2

∂a2
· · · ∂x2

∂aN

...
...

. . .
...

∂xN

∂a1

∂xN

∂a2
· · · ∂xN

∂aN











. (1.12)

If we expand the terms of the first row using he chain rule, e.g.

∂u1

∂a1
=
∂u1

∂x1

∂x1

∂a1
+
∂u1

∂x2

∂x2

∂a1
+ · · ·+ ∂u1

∂xN

∂xN
∂a1

, (1.13)

we see that we will get a contribution only from the terms involving ∂u1

∂x1

, since
all other terms involve the determinant of a matrix with two identical rows.
Thus the term involving the derivative of the top row gives the contribution
∂u1

∂x1
Det(J). Similarly, the derivatives of the second row gives the additive con-

tribution ∂u2

∂x2

Det(J). Continuing, we obtain

D

Dt
DetJ = div(u) Det(J). (1.14)

Note that, since an incompressible fluid has Det(J) = 1, such a fluid must
satisfy, by (1.14), div(u) = 0, which is the way an incompressible fluid is defined
in Eulerian variables.

1.2.1 Solenoidal velocity fields

.
The adjective solenoidal applied to a vector field is equivalent to “divergence-

free”. We will used either div(u) or ∇·u to denote divergence. The incompress-
ibility of a material with a solenoidal vector field means that the Lagrangian
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Figure 1.4: Solenoidal velocity fields. (a) Two streamlines in two dimensions.
(b) A stream tube in three dimensions.

map Mt preserves volume and so whatever fluid moves into a region of space
is matched by an equal amount of fluid moving out. In two dimensions the
equation expressing the solenoidal condition is

∂u

∂x
+
∂v

∂y
= 0 (1.15)

If ψ(x, y) posses continuous second derivatives we may satisfy (1.15) by setting

u =
∂ψ

∂y
. v = −∂ψ

∂x
. (1.16)

The function ψ is called the stream function of the velocity field. The reason
for the term is immediate: The instantaneous streamline passing through x, y
has direction (u(x, y), v(x, y)) at this point. The normal to the streamline at
this point is ∇ψ(x, y). But we see from (1.16) that (u, v) · ∇ψ = 0 there, so the
lines of constant ψ are the instantaneous streamlines of (u, v).

Consider two streamlines ψ = ψi, i = 1, 2 and any oriented simple contour
(no self-crossings) connecting one streamline to the other. The claim is then
that the flux of fluid across this contour, from left to right seen by an observed
facing in the direction of orientation of the contour is given by the difference of
the values of the stream function, ψ2 − ψ1 if the contour is oriented to go from
streamline 1 to streamline 2, see figure 1.4(a). Indeed, oriented as shown the line
integral of flux is just

∫

(u, v) · (dy,−dx) =
∫

dψ = ψ2 −ψ1. In three dimensions,
we similarly introduce a stream tube, consisting of a collection of streamlines,
see figure (1.4)(b). The flux of fluid across any “face” cutting through the tube
must be the same. This follows immediately by applying the divergence theorem
to the integral of div u over the stream tube. Note that we are referring here
to the flux of volume of fluid, not flux of mass.

In three dimensions there are various “stream functions” used when special
symmetry allow them. An example of a class of solenoidal flows generated by
two scalar functions is u = ∇α × ∇β where the intersections of the surfaces
of constant α(x, y, z) and β(x, y, z) are the streamlines. Since ∇α × ∇β =
∇× (α∇β) we see that these flows are indeed solenoidal.
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1.2.2 The convection theorem

Suppose that St is a region of fluid particles and let f(x, t) be a scalar function.
Forming the volume integral over St, F =

∫

St
fdVx, we seek to compute dF

dt
.

Now dVx = dx1 · · ·dxN = Det(J)da1 · · ·aN = Det(J)dVa. Thus

dF

dt
=

d

dt

∫

S0

f(x(a, t), t)Det(J)dVa =

∫

S0

Det(J)
d

dt
f(x(a, t), t)dVa

+

∫

S0

f(x(a, t), t)
d

dt
Det(J)dVa =

∫

S0

[Df

Dt
+ fdiv(u)

]

Det(J)dVa,

and so
dF

dt
=

∫

St

[Df

Dt
+ fdiv(u)

]

dVx. (1.17)

The result (1.17) is called the convection theorem. We can contrast this
calculation with one over a fixed finite region R of space with boundary ∂R. In
that case the rate of change of f contained in R is just

d

dt

∫

R

fdVx =

∫

R

∂f

∂t
dVx. (1.18)

The difference between the two calculations involves the flux of f through the
boundary of the domain. Indeed we can write the convection theorem in the
form

dF

dt
=

∫

St

[∂f

∂t
+ div(fu)

]

dVx. (1.19)

Using the divergence (or Gauss’) theorem, and considering the instant when
St = R, we have

dF

dt
=

∫

R

∂f

∂t
dVx +

∫

∂R

fu · ndSx, (1.20)

where n is the outer normal to the region and dSx is the area element of ∂R. The
second term on the right is flux of f out of the region R. Thus the convection
theorem incorporates into the change in f within a region, the flux of f into or
out of the region, due to the motion of the boundary of the region. Once we
identify f with a useful physical property of the fluid, the convection theorem
will be useful for expressing the conservation of this property, see chapter 2.

1.2.3 Material vector fields: The Lie derivative

Certain vector fields in fluid mechanics, and notably the vorticity field, ω(x, t) =
∇× u, see chapter 3, can in certain cases behave as a material vector field. To
understand the concept of a material vector one must imagine the direction of
the vector to be determined by nearby material points. It is wrong to think of
a material vector as attached to a fluid particle and constant there. This would
amount to a simple translation of the vector along the particle path.
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Instead, we want the direction of the vector to be that of a differential
segment connecting two nearby fluid particles, dli = Jijdaj. Furthermore, the
length of the material vector is to be proportional to this differential length
as time evolves and the particles move. Consequently, once the particles are
selected, the future orientation and length of a material vector will be completely
determined by the Jacobian matrix of the flow.

Thus we define a material vector field as one of the form (in Lagrangian
variables)

vi(a, t) = Jij(a, t)Vj(a) (1.21)

Of course, given the inverse a(x, t) we can express v as a function of x, t to
obtain its Eulerian structure.

We now determine the time rate of change of a material vector field following
the fluid parcel. To obtain this we differentiate v(a, t) with respect to time for
fixed a, and develop the result using the chain rule:

∂vi
∂t

∣

∣

∣

a
=
∂Jij
∂t

∣

∣

∣

a
Vj(a) =

∂ui
∂aj

Vj

=
∂ui
∂xk

∂xk
∂aj

Vj = vk
∂ui
∂xk

. (1.22)

Introducing the material derivative, we see that a material vector field satisfies
the following equation in Eulerian variables:

Dv

Dt
=
∂v

∂t

∣

∣

∣

x
+ u · ∇v − v · ∇u ≡ vt + Luv = 0 (1.23)

In differential geometry Lu is called the Lie derivative of the vector field v with
respect to the vector field u.

The way this works can be understood by moving neighboring point along
particle paths.

Figure 1.5: Computing the time derivative of a material vector.

Let v = AB = ∆x be a small material vector at time t, see figure 1.5. At
time ∆tlater, the vector has become CD. The curved lines are the particle
paths through A,B of the vector field u(x, t). Selecting A as x, we see that
after a small time interval ∆t the point C is A+ u(x, t)∆t and D is the point
B + u(x + ∆x, t)∆t. Consequently

CD −AB

∆t
= u(x + ∆x, t)− u(x, t). (1.24)
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The left-hand side of (1.24) is approximately Dv/Dt, and right-hand side is
approximately v · ∇u, so in the line ∆x,∆t → 0 we get (1.23). A material
vector field has the property that its magnitude can change by the stretching
properties of the underlying flow, and its direction can change by the rotation
of the fluid parcel.

Problem Set 1

1. Consider the flow in the (x, y) plane given by u = −y, v = x + t. (a)
What is the instantaneous streamline through the origin at t = 1?(b) what is
the path of the fluid particle initially at the origin, 0 < t < 6π? (c) What is the
streak line emanating form the origin, 0 < t < 6π?

2. Consider the “point vortex ” flow in two dimensions,

(u, v) = UL(
−y

x2 + y2
,

x

x2 + y2
), x2 + y2 6= 0,

where U, L are reference values of speed and length. (a) Show that the La-
grangian coordinates for this flow may be written

x(a, b, t) = R0 cos (ωt + θ0), y(a, b, t) = R0 sin (ωt+ θ0)

where R2
0 = a2 +b2, θ0 = arctan (b/a), and ω = UL/R2

0. (b) Consider, at t = 0 a
small rectangle of marked fluid particles determined by the points A(L, 0), B(L+
∆x, 0), C(L+ ∆x,∆y), D(L,∆y). If the points move with the fluid, once point
A returns to its initial position what is the shape of the marked region? Since
(∆x,∆y) are small, you may assume the region remains a parallelogram. Do
this, first, by computing the entry ∂y/∂a in the Jacobian, evaluated at A(L, 0).
Then verify your result by considering the “lag” of particle B as it moves on a
slightly larger circle at a slightly slower speed, relative to particle A, for a time
taken by A to complete one revolution.

3. As was noted in class, Lagrangian coordinates can use any unique labeling
of fluid particles. To illustrate this, consider the Lagrangian coordinates in two
dimensions

x(a, b, t) = a+
1

k
ekb sink(a + ct), y = b− 1

k
ekb cos k(a+ ct),

where k, c are constants. Note here a, b are not equal to (x, y) for any t0 By
examining the determinant of the Jacobian, verify that this gives a unique label-
ing of fluid particles provided that b 6= 0. What is the situation if b = 0?(These
waves, which were discovered by Gerstner in 1802, represent gravity waves if
c2 = g/k where g is the acceleration of gravity. They do not have any simple
Eulerian representation. These waves are discussed in Lamb’s book.)

4. In one dimension, the Eulerian velocity is given to be u(x, t) = 2x/(1+ t).
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(a) Find the Lagrangian coordinate x(a, t). (b) Find the Lagrangian velocity as
a function of a, t. (c) Find the Jacobean ∂x/∂a = J as a function of a, t.

5. For the stagnation-point flow u = (u, v) = U/L(x,−y), show that a fluid
particle in the first quadrant which crosses the line y = L at time t = 0, crosses
the line x = L at time t = L

U
log (UL/ψ) on the streamline Uxy/L = ψ. Do

this in two ways. First, consider the line integral of u · ~ds/(u2 + v2) along a
streamline. Second, use Lagrangian variables.

6. Let S be the surface of a deformable body in three dimension, and let
I =

∫

S
fndS for some scalar function f , n being the outward normal. Show

that
d

dt

∫

fndS =

∫

S

∂f

∂t
ndS +

∫

S

(ub · n)∇fdS. (1.25)

(Hint: First convert to a volume integral between S and an outer surface S′

which is fixed. Then differentiate and apply the convection theorem. Finally
convert back to a surface integral.)



Chapter 2

Conservation of mass and

momentum

2.1 Conservation of mass

Every fluid we consider is endowed with a non-negative density, usually denoted
by ρ, which is in the Eulerian setting is a scalar function of x, t. Its unit are mass
per unit volume. Water has a density of about 1 gram per cubic centimeter.
For air the density is about 10−3 grams per cubic centimeter, but of course
pressure and temperature affect air density significantly. The air in a room
of a thousand cubic meters= 109 cubic centimeters weighs about a thousand
kilograms, or more than a ton!

2.1.1 Eulerian form

Let us suppose that mass is being added or subtracted from space as a function
q(x, t), of dimensions mass per unit volume per unit time. The conservation of
mass in a fixed region R can be expressed using (1.20) with f = ρ:

d

dt

∫

R

ρdVx =

∫

R

∂ρ

∂t
dVx +

∫

∂R

ρu · ndSx. (2.1)

Now
d

dt

∫

R

ρdVx =

∫

R

qdVx (2.2)

and if we bring the surface integral in (2.1) back into the volume integral using
the divergence theorem we arrive at

∫

R

[∂ρ

∂t
+ div(uρ) − q

]

dVx = 0. (2.3)

Since our functions are continuous and R is an arbitrary open set in RN , the
integrand in (2.3) must vanish, yielding the conservation of mass equation in

15
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the Eulerian form:
∂ρ

∂t
+ div(uρ) = q. (2.4)

Note that this last equation can also be written

Dρ

Dt
+ ρdiv u = q. (2.5)

The conservation of mass equation in either of these forms is sometimes called
(for obscure reasons) the equation of continuity.

The form (2.5) shows that the material derivative of the density changes in
two ways, either by sources and sinks of mass q > 0 or q < 0 respectively, or else
by the non-vanishing of the divergence of the velocity field. A positive value of
the divergence, as for u = (x, y, z), is associated with an expansive flow, thereby
reducing local density. This can be examined more closely as follows. Let V be
a small volume of fluid where the density is essentially constant. Then ρV is
the mass within this fluid parcel, which is a material invariant D(ρV )/Dt = 0.
Thus Dρ/Dt + ρV −1DV/Dt = 0. Comparing this with (2.5) we have

div u =
1

V

DV

Dt
. (2.6)

Example 2.1: As we have seen in Chapter 1, an incompressible fluid satis-
fies div u = 0. For such a fluid, free of sources or sinks of mass, we have

Dρ

Dt
= 0, (2.7)

that is, now density becomes a material property. This does not say that the
density is constant everywhere in space, only that is constant at a given fluid
parcel, as it moves about . (Note that we use parcel here to suggest that we
have to average over a small volume to compute the density.) However a fluid of
constant density without mass addition must be incompressible. This difference
is important. Sea water is essentially incompressible but density changes due to
salinity are an important part of the dynamics of the oceans.

2.1.2 Lagrangian form

If q = 0 the Lagrangian form of the conservation of mass is very simple because
if we move with the fluid the density changes that we see are due to expansion
and dilation of the fluid parcel, which is controlled by Det(J). Let a parcel have
volume V0 initially, with essentially constant initial density ρ0. Then the mass
of the parcel is ρ0V0, and is a material invariant. At later times the density is
ρ and the volume is V0Det(J), so conservation of mass is expressed by

DetJ(a, t) =
ρ0

ρ
. (2.8)

If q 6= 0 the Lagrangian conservation of mass must be written

∂

∂t

∣

∣

∣

a
ρDet(J) = Det(J)q(x(a, t), t). (2.9)
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It is easy to get from Eulerian to Lagrangian form using (1.14). Assuming q = 0,

Dρ

Dt
+ ρ div u = 0 =

Dρ

Dt
+ ρ

DDet(J)/Dt

Det(J)
=

1

Det(J)

D

Dt
(ρDet(J)) (2.10)

and the connection is complete.

Example 2.2: Consider, in one dimension, the unsteady velocity field
u(x, t) = 2xt

1+t2
. We assume no sources of sinks of mass, and set ρ(x, 0) = x.

What is the density field at later times, in both Eulerian and Lagrangian forms?
First note that this is a reasonable question, since we have a conservation of
mass equation to evolve the density in time. First deriving the Lagrangian
coordinates, we have

dx

dt
=

2xt

1 + t2
, x(0) = a. (2.11)

The solution is x = a(1 + t2). The Jacobian is then J = 1 + t2. The equation of
conservation of mass in Lagrangian form, given that ρ0(a) = a, is ρ = a/(1+t2).
Since a = x/(1 + t2), the Eulerian form of the density is ρ = x(1 + t2)2. It is
easy to check that this last expression satisfies the Eulerian conservation of mass
equation in one dimension ρt + (ρu)x = 0.

Example 2.3 Consider the two-dimensional stagnation-point flow (u, v) =
(x,−y) with initial density ρ0(x, y) = x2 + y2 and q = 0. The flow is incom-
pressible, so ρ is material. In Lagrangian form, ρ(a, b, t) = a2 + b2. To find ρ
as a function of x, y, t, we note that the Lagrangian coordinates of the flow are
(x, y) = (aet, be−t), and so

ρ(x, y, t) = (xe−t)2 + (yet)2 = x2e−2t + y2e2t. (2.12)

The lines of constant density, which are initially circles centered at the origin,
are flattened into ellipses by the flow.

2.1.3 Another convection identity

Frequently fluid properties are most conveniently thought of as densities per
unit mass rather than per unit volume. If the conservation such a quantity, f
say, is to be examined, we will need to consider ρf to get “f per unit volume”
and so be able to compute total amount by integration over a volume. Consider
then

d

dt

∫

St

ρfdVx =

∫

St

[∂ρf

∂t
+ div(ρfu)

]

dVx. (2.13)

We now assume conservation of mass with q = 0. From the product rule of
differentiation we have div(ρfu) = fdiv(ρu)+ρu·∇f , and so the integrand splits
into a part which vanishes by conservation of mass, and a material derivative of
f time the density:

d

dt

∫

St

ρfdVx =

∫

St

ρ
Df

Dt
dVx. (2.14)

Thus the effect of the multiplier ρ is to turn the derivative of the integral into
an integral of a material derivative.
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2.2 Conservation of momentum in an ideal fluid

The momentum of a fluid is defined to be ρu, per unit volume. Newton’s second
law of motion states that momentum is conserved by a mechanical system of
masses if no forces act on the system. We are thus in a position to use (2.14),
where the “sources and sinks” of momentum are forces.

If F(x, t) is the force acting on the fluid, per unit volume, then we have
immediately (assuming conservation of mass with q = 0),

ρ
Du

Dt
= F. (2.15)

Since we have seen that Du
Dt

is the fluid acceleration, (2.15) states Newton’s Law
that mass times acceleration equals force, in both magnitude and direction.

Of course the Lagrangian form of (2.15) is obtained by replacing the accel-
eration by its Lagrangian counterpart:

ρ
∂2x

∂t2

∣

∣

∣

a
= F. (2.16)

The main issues involved with conservation of momentum are those connected
with the forces which are on a parcel of fluid. There are many possible forces to
consider: pressure, gravity, viscous, surface tension, electromotive, etc. Each has
a physical origin and a mathematical model with a supporting set of observation
and analysis. In the present chapter we consider only an ideal fluid. The only
new fluid variable we will need to introduce is the pressure, a scalar function
p(x, t).

In general the force F appearing in (2.15) is assumed to take the form

Fi = fi +
∂σij
∂xj

. (2.17)

Here f is a body force (exerted from the “outside”), and σ is a second-order
tensor called the stress tensor. Integrated over a region R, the force on the
region is

∫

R

FdVx =

∫

R

fdVx +

∫

∂R

σ · ndSx, (2.18)

using the divergence theorem. We can thus see that the effect of the stress tensor
is to produce a force on the boundary of any fluid parcel, the contribution from
an area element to this force being σijnjdSx for an outward normal n. The
remaining body force f will sometimes be taken to be a uniform gravitational
field f = ρg, where g = constant. On the surface of the earth gravity acts
toward the Earth’s center with a strength g ≈ 980 cm/sec2. We also introduce
a general force potential Φ, such that f = −ρ∇Φ.
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2.2.1 The pressure

An ideal fluid is defined by a stress tensor of the form

σij = −pδij =





−p 0 0
0 −p 0
0 0 −p



 , (2.19)

where δij = 1, i = j,= 0 otherwise. Thus when pressure is positive the force
on the surface of a parcel is opposite to the outer normal, as intuition suggests.
Note that now

div σ = −∇p. (2.20)

For a compressible fluid the pressure accounts physically for the resistance
to compression. But pressure persists as a fundamental source of surface forces
for an incompressible fluid, and its physical meaning in the incompressible case
is subtle.1

An ideal fluid with no mass addition and no body force thus satisfies

ρ
Du

Dt
+ ∇p = 0, (2.21)

together with
Dρ

Dt
+ ρdiv u = 0. (2.22)

This system of equation for an ideal fluid are also often referred to as Euler’s
equations. The term Euler flow is also in wide use.

With Euler’s system we have N + 1 equations for the N + 2 unknowns
u1, . . . , uN , ρ, p. Another equation will be needed to complete the system. One
possibility is the incompressible assumption div u = 0. A common option is to
assume constant density. Then ρ is eliminated as an unknown and the conserva-
tion of mass equation is replaced by the incompressibility condition. For gases
the missing relation is an equation of state, which brings in the thermodynamic
properties of the fluid.

The pressure force as we have defined it above is isotropic, in the sense
the pressure is the same independently of the orientation of the area element
on which it acts. A simple two-dimensional diagram will illustrate why this
is so, see figure 2.1. Suppose that the pressure is pi on the face of length Li.
Equating forces, we have p1L1 cos θ = p2L2, p1L1 sin θ = p3L3. But L1 cos θ =
L2, L1 sin θ = L3, so we see that p1 = p2 = p3. So indeed the pressure sensed
by a face does not depend upon the orientation of the face.

2.2.2 Lagrangian form of conservation of momentum

The Lagrangian form of the acceleration has been noted above. The momentum
equation of an ideal fluid requires that we express ∇p as a Lagrangian variable.

1One aspect of the incompressible case should be noted here, namely that the pressure
is arbitrary up to an additive constant. Consequently it is only pressure differences which
matter. This is not the case for a compressible gas.
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Figure 2.1: Isotropicity of pressure.

That is, if p is to be a function of a, t then since ∇ here is actually the x gradient
∇x, we have ∇xp = J−1∇ap. This appearance of the Jacobian is an awkward
feature of Lagrangian fluid dynamics, and is one of the reasons that we shall
emphasize Eulerian variables in discussing the dynamics of a fluid.

2.2.3 Hydrostatics: the Archimedean principle

Hydrostatics is concerned with fluids at rest (u = 0), usually in the presence of
gravity. We consider here only the case of a fluid stratified in one dimension.
To fix the coordinates let the z-axis be vertical up, and g = −giz , where g is a
positive constant. We suppose that the density is a function of z alone. This
allows, for example, a body of water beneath a stratified atmosphere. Let a solid
three-dimensional body (any deformation of a sphere for example) be submerged
in the fluid. Archimedes principle says that the force exerted by the pressure
on the surface of the body is equal to the total weight of the fluid displaced by
the body. We want to establish this principle in the case considered.

Now the pressure satisfies ∇p = −gρ(z)iz . The pressure force is given by
Fpressure = −

∫

pndS taken over the surface of the body. But this surface
pressure is just the same as would be acting on a virtual surface within the
fluid, no body present. Using the divergence theorem, we may convert this to
an integral over the interior of this surface. Of course, there is no fluid within
the body. We are just using the math to evaluate the surface integral. The
result is Fpressure = giz

∫

ρdV . This is a force upward equal to the weight of
the displaced fluid, as stated.

2.3 Steady flow of a fluid of constant density

This special case gives us an opportunity to obtain some useful results rather
easily in a class of problems of some importance. We shall allow a body force of
the form f = −ρ∇Φ, so the momentum equation may be written, after division
by the constant density,

u · ∇u + ρ−1∇p+ ∇Φ = 0. (2.23)

We note now a vector identity which will be useful:

A × (∇× B) + B× (∇× A) + A · ∇B + B · ∇A = ∇(A · B). (2.24)
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Applying this to A = B = u we have

u · ∇u =
1

2
∇|u|2 − u× (∇× u). (2.25)

Using (2.25) in (2.23) we have

∇(ρ−1p+ Φ +
1

2
|u|2) = u× (∇× u). (2.26)

Taking the dot product with u on both sides we obtain

u · ∇(ρ−1p + Φ +
1

2
|u|2) = 0. (2.27)

The famous Bernoulli theorem for steady flows follows:In the steady flow of an
ideal fluid of constant density the quantity H ≡ ρ−1p + Φ + 1

2 |u|2, called the
Bernoulli function, is constant on the streamlines of the flow. The importance
of this result is in the relation it gives us between velocity and pressure. Apart
from the contribution of Φ, the constancy of H implies that an increase of
velocity is accompanied by a decrease of the pressure. This is not an obvious
dynamical consequence of the equations of motion, and it is interesting that we
have derived it without referring to the solenoidal property of u. Recall that
the latter is implied by the constancy of density when there is no mass added
or removed. If we make use of the solenoidal property then, using the identity
∇ · (Aψ) = ψ∇ ·A + A · ∇φ for vector and scaler fields, we see that uH is also
solenoidal, and so the flux of this quantity is conserved in stream tubes. This
vector field arises when conservation of mechanical energy, relating changes in
kinetic energy to the work done by forces, is studied, see problem 2.2.

It is helpful to apply the Bernoulli theorem to flow in a smooth rigid pipe
of circular cross section and slowly varying diameter, with Φ = 0. For an ideal
(frictionless) fluid we may assume that the velocity is approximately constant
over the section, this being reasonable if the slope of the wall of the pipe is small.
The velocity may thus be taken as a scalar function u(x). If the section area is
A(x), then the conservation of mass (and here, volume) implies that uA ≡ Q =

constant, so that ρ−1p + Q2

2 A
−2 = constant. If we consider a contraction, as

in figure 2.2., where the area and velocity go from A1, u1 to A2, u2, then the
fluid speeds up to satisfy A1u1 = A2u2 = Q. To achieve this speedup in steady
flow, a force must be acting on the fluid, here a pressure force. Conservation
of momentum states the flux of momentum out minus the flux of momentum
in must equal the pressure force on the fluid in the pipe between section 1
and section 2. Now H = p/ρ+ 1

2(Q/A)2 is constant, so (if force is positive to
the right) the two ends of the tube give a net pressure force p1A1 − p2A2 =
ρQ2/2(1/A2−1/A1) acting on the fluid. But there is also a pressure force along

the curved part of the tube. This is seen to be
∫A2

A1

pdA = −
∫ A2

A1

ρ
2 (Q/A)2dA =

ρQ2/2(1/A2−1/A1). These two contributions are equal in our one-dimensional
approximation, and their sum is ρQ2(1/A2 − 1/A1) But the momentum out
minus momentum in is ρ(A2u

2
2 − A1u

2
1) = ρQ2(1/A2 − 1/A1) and is indeed
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Figure 2.2: Steady flow through a contraction.

equal to the net pressure force. Intuitively then, to achieve the speedup of the
fluid necessary to force the fluid through a contraction, and to maintain such a
flow as steady in time, it is necessary to supply a larger pressure at station 1 than
at station 2. Bernoulli’s theorem captures this creation of momentum elegantly,
but ultimately the physics comes down to pressure differences accelerating fluid
parcels.

2.4 Intrinsic coordinates in steady flow

The one-dimensional analysis just given suggests looking briefly at the relations
obtained in an arbitrary steady flow of an ideal fluid using the streamlines a
part of the coordinate system. The resulting intrinsic coordinates are revealing
of the dynamics of fluid parcels. Let t be the unit tangent vector to an oriented
streamline. The we may write u = qt, q = |u|. If s is arclength along the
streamline, then

∂u

∂s
=
∂q

∂s
t + q

∂t

∂s
=
∂q

∂s
t + qκn, (2.28)

where n is the unit normal, κ the streamline curvature, and we have used the
first Frenet-Serret formula. Now the operator u · ∇ is just q ∂

∂s
, and so we have

from (2.28)

u · ∇u = q
∂q

∂s
t + q2κn. (2.29)

This shows that the acceleration in steady flow splits into a component along
the streamline, determined by the variation of q, and a centripetal accelera-
tion associated with streamline curvature. The equations of motion in intrinsic
coordinates (zero body force) are therefore

ρq
∂q

∂s
+
∂p

∂s
= 0, ρκq2 +

∂p

∂n
= 0. (2.30)
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What form does the solenoidal condition take in intrinsic coordinates? We
consider this question in two dimensions. We have

∇ · u = ∇ · (qt) = t · ∇q + q∇ · t =
∂q

∂s
+ q∇ · t. (2.31)

Let us introduce an angle θ so that t(s) = (cos θ(s), sin θ(s)). Then

∇ · t = − sin θ
∂θ

∂x
+ cos θ

∂θ

∂y
= n · ∇θ =

∂θ

∂n
. (2.32)

Since κ = ∂θ
∂s

is the streamline curvature, ∂θ
∂n

, which we write as κn, is the
curvature of the coordinate lines normal to the streamlines. Thus the solenoidal
condition in two dimensions assumes the form

∂q

∂s
+ qκn = 0. (2.33)

2.5 Potential flows with constant density

Another important and very large class of fluid flows are the so-called potential
flows, defined as flows having a velocity field which is the gradient of a scalar
potential, usually denoted by φ:

u = ∇φ. (2.34)

For simplicity we consider here only the case of constant density, but allow a
body force −ρ∇Φ and permit the flow to be unsteady. Since we now also have
that u is solenoidal, it follows that

∇ · ∇φ = ∇2φ = 0. (2.35)

Thus the velocity field is determined by solving Laplace’s equation (2.35)
The momentum equation has not yet been needed, but it necessary in order

to determine the pressure, given u. The momentum equation is

ut + ∇(
1

2
|u|2 + p/ρ+ Φ) = u× (∇× u). (2.36)

Since u = ∇φ we now have ∇× u = 0 and therefore

∇(φt +
1

2
|∇φ|2 + p/ρ+ Φ) = 0, (2.37)

or

φt +
1

2
|∇φ|2 + p/ρ+ Φ = h(t). (2.38)

The arbitrary function h(t) may in fact be set equal to zero; otherwise we
can replace φ by φ −

∫

hdt without affecting u. We see that (2.38) is another
“Bernoulli constant”, this time applicable to any connected region of space
where the potential flow is defined. It allows us to compute the pressure in an
unsteady potential flow, see problem 2.6.
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2.6 Boundary conditions on an ideal fluid

As we have noted, a main physical property of real fluid which is not present for
an ideal fluid is a viscosity. The ideal fluid is“slippery”, in the following sense.
Suppose that adjacent to a solid wall the pressure varies along the wall. The
only force a fluid parcel can experience is a pressure force associated with the
pressure gradient. If the gradient at the wall is tangent to the wall, fluid will
be accelerated and there will have to be a tangential component of velocity at
the wall. This suggests that we cannot place any restriction on the tangential
component of velocity at a rigid fixed boundary of the fluid.

On the other hand, by a rigid fixed wall we mean that fluid is unable to
penetrate the wall, and so we will have to impose the condition n ·u = un = 0 on
the wall. There is a subtlety here connected with our continuum approximation.
It might be though that the fluid cannot penetrate into a rigid wall, but could it
not be possible for the fluid to tear off the wall, forming a free interface next to
an empty cavity? to see that this cannot be the case for smooth pressure fields,
consider the reversed stagnation-point flow (u, v) = (−x, y). On the upper y-
axis we have a Bernoulli function p/ρ+ 1

2
y2. The gradient of pressure along this

line is indeed accelerating the fluid away from the wall, but the fluid remains at
rest at x = y = 0. We cannot really contemplate a pressure force on a particle,
which might cause the particle to leave the wall, only on a parcel. In fact in this
example fluid parcels near the y-axis are being compressed in the x-direction
and stretched in the y-direction.

Thus, the appropriate boundary condition at a fixed rigid wall adjacent to
an ideal fluid is

un = 0 on the wall. (2.39)

For a potential flow, this becomes

∂φ

∂n
= 0 on the wall. (2.40)

We shall find that these conditions at a rigid wall for an ideal fluid are sufficient
to (usually uniquely) determine fluid flows in problems of practical importance.

Another way to express the appropriate boundary condition on a ideal fluid
at a rigid wall is that fluid particles on a wall stay on the wall. This alternative
is attractive because it is also true of a moving rigid wall, where the velocity
component normal to the wall need not vanish at the wall. So what is the
appropriate condition on a moving wall? To obtain this it is convenient to define
the surface as a function of time by the equation Σ(x, t) = 0. For a particle at
position xp(t) to be on the surface means that Σ(xp(t), t) = 0. Differentiating
this expression with respect to time we obtain

∂Σ

∂t

∣

∣

∣

x
+ u · ∇Σ = 0. (2.41)

For example, let a rigid cylinder of radius amove in the x-direction with velocity
U . Then Σ = (x − Ut)2 + y2 − a2, and (2.41) becomes −2U(x − Ut) + 2(x −
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Ut)u+ 2yv = 0 Evaluating this on the surface of the cylinder, we get

u cos θ + v sin θ = U cos θ = un. (2.42)

We remark that the same reasoning can be applied to the moving interface
between two fluids. This interface may also be regarded as consisting of fluid
particles that remain on the interface. We refer to this generalized boundary
condition at a moving surface as a surface condition.

Finally, as part of this first look at the boundary condition of fluid dynamics,
we should note that for unsteady fluid flows we will sometimes need to prescribe
initial conditions, insuring that the fluid equations may be used to carry the
solution forward in time.

Example 2.4: We consider an example of potential flow past a body in
two dimensions, constant density, no body force. The body is the circular
cylinder r = a, and the fluid “ at infinity” has fixed velocity (U, 0) In two
dimensional polar coordinates, Laplace’s equation has solutions of the form
ln r, (rn, r−n)(cos θ, sin θ), n = 1, 2, . . .. The potential Ur cos θ = Ux has the
correct behavior at infinity, and so we need a decaying solution which will insure
the boundary condition ∂φ

∂r
= 0 when r = a. The correct choice is clearly a

multiple of r−1 cos θ and we obtain

φ = U cos θ(r + a2/r) (2.43)

Note that U cos a2/r is the potential of a flow seen by an observer at rest relative
to the fluid at infinity, when the cylinder moves relative to the fluid with a
velocity (−U, 0). We see that indeed this potential satisfies ∂φ

∂r

∣

∣

r=a
= −U cos θ

as required by (2.42). Streamlines both inside and outside the cylinder are
shown in figure 2.3.

We have found a solution representing the desired flow, but is the solution
unique? Perhaps surprisingly, the answer is no. The reason, associated with the
fluid region being non-simply connected, will be discussed in chapter 4.

Example 2.5 An interesting case of unsteady potential flow occurs with
deep water waves (constant density). The fluid at rest is a liquid in the domain
z < 0 of R3. Gravity acts downward so Φ = −gz. The space above is taken as
having no density and a uniform pressure p0. If the water is disturbed, waves
can form on the surface, which we will assume to be described by a function
z = Z(x, y, t) (no breaking of waves). Under appropriate initial conditions it
turns out that we may assume the liquid velocity to be a potential flow. Thus
our mathematical problem is to solve Laplace’s equation in z < Z(x, y, t) with
a surface condition on φ and a pressure condition pz=Z = p0. For the latter we
can use the Bernoulli theorem for unsteady potential flows, to obtain

p0/ρ =
[

− φt −
1

2
|∇φ|2 + gz

]

z=Z
. (2.44)

The surface condition is D
Dt

(z − Z(x, y, t)) = 0 or

[

z − Zt − uZx − vZy

]

z=Z
= 0. (2.45)
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Figure 2.3: Potential flow past a circular cylinder.

The object is to find φ(x, y, z, t), Z(x, y, t), given e.g. that the water is initially
at rest and that the fluid surface is at an initial elevation z = Z0(x, y). We will
consider water waves in more detail in Chapter 9.
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Problem set 2

1. For potential flow over a circular cylinder as discussed in class, with
pressure equal to the constant p∞ at infinity , find the static pressure on surface
of the cylinder as a function of angle from the front stagnation point. (Use
Bernoulli’s theorem.) Evaluate the drag force (the force in the direction of
the flow at infinite which acts on the cylinder), by integrating the pressure
around the boundary. Verify that the drag force vanishes. This is an instance
of D’Alembert’s paradox, the vanishing of drag of bodies in steady potential
flow.

2. For an ideal inviscid fluid of constant density, no gravity, the conservation
of mechanical energy is studied by evaluating the time derivative of total kinetic
energy in the form

d

dt

∫

D

1

2
ρ|u|2dV =

∫

∂D

F · ndS.

Here D is an arbitrary fixed domain with smooth boundary ∂D. What is the
vector F? Interpret the terms of F physically.

3. An open rectangular vessel of water is allowed to slide freely down a
smooth frictionless plane inclined at an angle α to the horizontal, in a uniform
vertical gravitational field of strength g. Find the inclination to the horizontal of
the free surface of the water, given that it is a surface of constant pressure. We
assume the fluid is at rest relative to an observer riding on the vessel. (Consider
the acceleration of the fluid particles in the water and balance this against the
gradient of pressure.)

4. Water (constant density) is to be pumped up a hill (gravity = (0, 0,−g))
through a pipe which tapers from an area A1 at the low point to the smaller
area A2 at a point a vertical distance L higher. What is the pressure p1 at
the bottom, needed to pump at a volume rate Q if the pressure at the top is
the atmospheric value p0? (Express in terms of the given quantities. Assuming
inviscid steady flow, use Bernoulli’s theorem with gravity and conservation of
mass. Assume that the flow velocity is uniform across the tube in computing
fluid flux and pressure.)

5. For a barotropic fluid, pressure is a function of density alone, p = p(ρ).
In this case derive the appropriate form of Bernoulli’s theorem for steady flow
without gravity. If p = kργ where γ, k are positive constants, show that q2 +
2γ
γ−1

p
ρ

is constant on a streamline, where q = |u| is the speed.

6. Water fills a truncated cone as shown in the figure. Gravity acts down (the
direction −z). The pressure at the top surface, of area A2 is zero. The height of
the container is H . At t = 0 the bottom, of area A1 < A2, is abruptly removed
and the water begins to fall out. Note that at time t = 0+ the pressure at the
bottom surface is also zero. The water has not moved but the acceleration is non-
zero. We may assume the resulting motion is a potential flow. Thus the potential
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Figure 2.4: Truncated cone of fluid

φ(z, r, t) in cylindrical polars has the Taylor series φ(r, z, t) = tΦ(r, z) + O(t2),
so dφ/dt = Φ(r, z)+O(t). Using these facts, set up a mathematical problem for
determining the pressure on the inside surface of cone at t = 0+. You should
specify all boundary conditions. You do not have to solve the resulting problem,
but can you guess what the surfaces Φ =constant would look like qualitatively?
What is the force felt at t = 0+ by someone holding the cone, in the limits
A1 → 0 and A1 → A2?



Chapter 3

Vorticity

We have already encountered the vorticity field in the identity

u · ∇u = ∇1

2
|u|2 − u × (∇× u). (3.1)

The vorticity field ω(x, t) is defined from the velocity field by

ω = ∇× u. (3.2)

A potential flow is a flow with zero vorticity. The term irrotational flow is widely
used. According to (3.1) the contribution to the acceleration coming from the
gradient of velocity can be split into two components, one having a potential
1
2 |u|2, the other given as a cross product orthogonal to both the velocity and
the vorticity. The latter component in older works in fluid dynamics has been
called the vortex force.

We remark that, in analogy with stream lines, we shall refer to the flow lines
of the vorticity field, i.e. the integral curves of the system

dx

ωx
=
dy

ωy
=
dz

ωz
, (3.3)

as (instantaneous) vortex lines. Similarly, in analogy with a stream tube in
three dimensions, we will refer to a bundle of vortex lines a vortex tube.

This straightforward definition of the vorticity field gives little insight into
its importance, either physically and theoretically. This chapter will be devoted
to examining the vorticity field from a variety of viewpoints.

3.1 Local analysis of the velocity field

The first thing to be noted is that vorticity is fundamentally an Eulerian prop-
erty since it involves spatial derivatives of the Eulerian velocity field. In a sense

29



30 CHAPTER 3. VORTICITY

the analytical structure of the flow is being expanded to include the first deriva-
tives of the velocity field. Suppose we expand the velocity field in a Taylor series
about the fixed point x:

ui(x + y, t) = ui(x, t) + yj
∂ui
∂xj

(x, t) + O(|y|2). (3.4)

We can make the division

∂ui
∂xj

=
1

2

[∂ui
∂xj

+
∂uj
∂xi

]

+
1

2

[ ∂ui
∂xj

− ∂uj
∂xi

]

. (3.5)

The term first term on the right, 1
2

[

∂ui

∂xj
+

∂uj

∂xi

]

, is often denoted by eij and is

the rate-of-strain tensor of the fluid. Here it will play a basic role when viscous

stresses are considered (Chapter 5). The second term, 1
2

[

∂ui

∂xj
− ∂uj

∂xi

]

, can be

seen to be, in three dimensions, the matrix

Ω =
1

2





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 . (3.6)

Example 3.1: In two dimensions, since u, v depend only on x, y, only one
component of the vorticity is non-zero, ω3 = ∂v

∂x
− ∂u

∂y
. This is usually written

simply as the scalar ω. Consider the two-dimensional flow (u, v) = (y, 0). In
this case

e =
1

2

(

0 1
1 0

)

, Ω =
1

2

(

0 1
−1 0

)

. (3.7)

and ω = −1. This is a simple “shear flow” with horizontal particle paths. Both
e and Ω are non-vanishing.

Example 3.2: Consider the flow (u, v) = (−y, x). This is a simple solid-
body rotation in the anti-clockwise sense. The vorticity is ω = 2, and e = 0.

These examples are a bit atypical because the vorticity is constant, but
they emphasize that a close association of the vorticity with fluid rotation, a
connection suggested by the skew-symmetric form of Ω, can be misleading.

Vorticity is a point property, but can only be defined by the limit operations
implicit in the needed derivatives. So it is impossible to attach a physical
meaning to “the vorticity of a particle”. We can truncate (3.4) and consider the
Lagrangian paths of fluid particles near x. Since e is real symmetric, it may
be diagonalized by a rotation to principal axes. Let the eigenvalues along the
diagonal be λi, i = 1, 2, 3. We the may assume our coordinate system is such
that e is the diagonal matrix D(x). Then the Lagrangian coordinates of the
perturbed path y satisfies

yt = D(x)y +
1

2
ω(x) × y. (3.8)

These equations couple together the rotation associated with the vorticity at
x with the straining field described by the first term. Note that the angular
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velocity associated with second term is 1
2ω. The statement “ vorticity at x

equals twice the angular velocity of the fluid at x” is often heard. But this
statement in fact makes no sense, since an angular velocity cannot be attributed
to a point. Given the velocity field of a fluid, one can determine the effects of
vorticity on the fluid only on a small open set, i.e. a fluid parcel.

On the other hand it is true that when vorticity is sufficiently large there
is sensible rotation observed in the fluid, and it is true that when one sees
“rotation” in the fluid, then vorticity is present. In a sense this is the key to
understanding its role, since it forces a definition of “rotation” in a fluid.

3.2 Circulation

Let C be a simple, smooth, oriented closed contour which is a deformation of
a circle, hence the boundary of an oriented surface S. Now Stokes’ theorem
applied to the velocity field states that

∫

C

u · dx =

∫

S

n · (∇× u)dS, (3.9)

where the direction of the normal n to S is chosen from the orientation of C by
the “right-hand rule”. We can interpret the right-hand side of (3.9) as the flux
of vorticity through S. So it must be that the left-hand side is an expression of
the effect of vorticity on the velocity field. We thus define the fluid circulation
of the velocity field u on the contour C by

ΓC =

∮

C

u · dx. (3.10)

The circulation is going to be our measure of the rotation of the fluid.
The key “point” is that is that circulation is defined globally, not at a point.

We need to consider an open set containing S in order to make this definition.
Example 3.3: Potential flows have the property that circulation vanishes

on any closed contour, as long as u is well-behaved in an open set containing S.
This is an obvious property of an irrotational flow.

Example 3.4 In two dimensions, the flow (u, v) = 1
2π (−y/r2 , x/r2) is a

point vortex. If C is a simple closed curve encircling the origin, then ΓC is
equal to the circulation on a circle centered at the origin, by independence of
path since (u, v) is irrotational everywhere except at the origin. The circulation
on a circle, taken counter-clockwise, is found to be unity. Indeed in polar form
the velocity is given by ur = 0, uθ = 1

2πr . The circulation on the circle of radius
r is thus 2πr

2πr = 1. This flow is called the point vortex of unit strength.

3.3 Kelvin’s theorem for a barotropic fluid

In chapters 12-14 we will be taking up the dynamics of general compressible
fluids. The intervening discussion will deal with only a restricted class of com-
pressible flows, the barotropic fluids. A barotropic fluid is defined by specifying
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pressure as a given function of the density, p(ρ). This reduces the dependent
variables of an ideal fluid to u, ρ and so the system of momentum and mass
equations is closed.

Theorem 1 (Kelvin’s theorem) Let C(t) be a simple close material curve in an
ideal fluid with body force −ρ∇Φ. Then, if either (i) ρ = constant, or (ii) the
fluid is barotropic, then the circulation ΓC(t) of u on C is invariant under the
flow:

d

dt
ΓC(t) = 0. (3.11)

To prove this consider a parametrization x(α, t) of C(t), 0 ≤ α ≤ A. Then

d

dt

∮

C

u · dx =
d

dt

∫ A

0

u · ∂x
∂α

dα =

∫ A

0

[Du

Dt
· ∂x
∂α

+ u · ∂u
∂α

]

dα. (3.12)

Making use of the momentum equation Du
Dt

+ 1
ρ
∇p+ ∇Φ = 0 we have

dΓC
dt

=

∫ A

0

[

− (
1

ρ
∇p+ ∇Φ) · ∂x

∂α
+ u · ∂u

∂α

]

dα, (3.13)

This becomes
dΓC
dt

=

∮

C

[−dp
ρ

+ d(
1

2
|u|2 − Φ)

]

. (3.14)

Now if ρ is a constant, or if the fluid is barotropic, the integrand may be written
as perfect differential (in the barotropic case a differential of −

∫

ρ−1 dp
dρ
dρ +

1
2 |u|2 − Φ). Since all variables are assumed single-valued, the integral vanishes
and the theorem is proved.

Kelvin’s theorem is a cornerstone of ideal fluid theory since it expresses a
global property of vorticity, namely the flux through a surface, as an invariant
of the flow. We shall see that it is very useful in understanding the kinematics
of vorticity.

3.4 The vorticity equation

In the present section we again assume that either ρ = constant, or else the
fluid is barotropic.

In either case it is of interest to consider an equation for vorticity, which can
be obtained by taking the curl of

Du

Dt
+

1

ρ
∇p+ ∇Φ = 0. (3.15)

Under the conditions stated, this will give

∇× Du

Dt
= 0. (3.16)
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Recalling u · ∇u = ∇ 1
2 |u|2 − u× ω, we use the vector identity

∇× (A× B) = B · ∇A−A · ∇B + A∇ ·B −B∇ · A. (3.17)

For the case of constant density and no mass addition, both ∇ · u and ∇ · ω

vanish, with the result
Dω

Dt
= ω · ∇u. (3.18)

For a barotropic fluid, we need to bring in conservation of mass to evaluate
∇ · u = −ρ−1Dρ/Dt. We then get in place of (3.18)

Dω

Dt
= ω · ∇u +

ω

ρ

Dρ

Dt
. (3.19)

This can be rewritten as
D(ω

ρ
)

Dt
=

ω

ρ
· ∇u. (3.20)

Now we want to compare (3.18) and (3.20) with (1.23), and observe that ω

in the first case and ω/ρ is the second is a material vector field as we defined
it in chapter 1. This is a deep and remarkable property of the vorticity field,
which gives it its importance in fluid mechanics. It tells us, for example, that
vorticity magnitude can be increased if two nearby fluid particles lying on the
same vortex line move apart.

Example 3.5 In two dimensions ω · ∇u = 0 and so the vorticity ω satisfies

Dω

Dt
= 0, (3.21)

i.e. in two dimensions, for the cases studied here, vorticity is a scalar material
invariant, whose value is always the same on a given fluid parcel.

In three dimensions the term ω ·∇u is sometimes called the vortex stretching
term. Its existence make two and three-dimensional vorticity behaviors entirely
different.

There is a Lagrangian form of the vorticity equation, due to Gauss. We
can obtain it here by recalling that vi(a, t) = Jij(a, t)Vi(a) defines a material
vector field. Let us assume that, given the initial velocity and therefore initial
vorticity fields, vorticity may be solved for uniquely at some function time t
using Euler’s equations. Then, any material vector field assuming the assigned
initial values for vorticity must be the unique vorticity field ω. However, if the
initial vorticity is ω0(x), then a material vector field which takes on these initial
values is J(a, t) · ω0(a). By uniqueness, we must have

ωi(a, t) = Jij(a, t)ω0j. (3.22)

in the constant density case. For the barotropic case, given initial density ρ0(x),
the corresponding equation is

ρ−1ωi(a, t) = ρ−1
0 (a)Jij(a, t)ω0j . (3.23)
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A

C

B
D

Figure 3.1: A segment of an oriented vortex tube.

This is Cauchy’s “solution” of the vorticity equation . Of course nothing has
been solved, only represented in terms of the unknown Jacobian. It is however a
revealing relation which directly ties the changes in vorticity to the deformation
experienced by a fluid parcel.

3.5 Helmholtz’ Laws

In dicussing the behavior of vorticity in a fluid flow we will want to consider as
our basic element a section of a vortex tube as shown in figure 3.1. Recall that a
vortex tube is a bundle of vortex lines, each of the lines being the instantaneous
flow lines of of the vorticity field.

In the mid-nineteenth century Helmholtz laid the foundations for the me-
chanics of vorticity. His conclusions can be summarized by the following three
laws:

• Fluid parcels free of vorticity stay free of vorticity.

• Vortex lines are material lines.

• The strength of a vortex tube, to be defined below, is an invariant of the
motion.

We have seen that the vorticity field, or the field divided by density in the
barotropic case, is a material vector field. The vortex lines are the same in each
case if ω is the same. Hence particles on a particular vortex line at one time,
remain on a line at a later time, and so the line is itself material. Thus the tube
segment in figure 3.1 is bounded laterally by a surface of vortex lines. The small
patch D in the surface thus carries no flux of vorticity. The bounding contour
of this patch is a material curve, and by Kelvin’s theorem the circulation on
the contour is a material invariant. Since this circulation is initially zero by the
absence of flux of vorticity through the patch, it will remain zero. Consequently
the lateral boundary of a vortex tube remains a boundary of the tube.
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In follows from the solenoidal property of vorticity and the divergence the-
orem that the flux of vorticity through the end surface A, must equal that
through the end surface B. This flux is a property of a vortex tube, called the
vortex tube strength. Note that this is independent of the compressibility or
incompressibility of the fluid. The tube strength expresses simply a property of
a solenoidal vector field.

To establish the third law of Helmholtz we must show that this strength is
a material invariant. But this follows immediately from Kelvin’s theorem, since
the circulation on the contour C is a material invariant. This circulation, for
the orientation of the contour shown in the figure, is equal to the vortex tube
strength by Stokes’ theorem, and we are done.

The first law is also established using Kelvin’s theorem. Suppose that a flow
is initially irrotational but at some time a fluid parcetionl is found where vor-
ticity is non-zero. A small closed contour can then be found with non-vanishing
circula is non-zero, by Kelvin’s theorem. This contradicts the irrotationality of
the initial flow.

Using these laws we may see how changes in the shape of a fluid parcel can
change the magnitude of vorticity. In figure 3.2 we show a segment of small
vortex tube which has changes under the flow from have length L1and section
area A1, to new values A2, L2. If the density is constant, volume is conserved,
A1L1 = A2L2. If the vorticity magnitudes are ω1, ω2, then invariance of the tube
strength implies ω1A1 = ω2A2. Comparing these expressions, ω2/ω1 = L2/L1.
Consequently, for an ideal fluid of constant density the vorticity is proportional
to vortex line length. We understand here that by line length we are referring
to the distance between to nearby fluid particles on the same vortex line. Thus
the growth or decay of vorticity in ideal fluid flow is intimately connected to
the stretching properties of the Lagrangian map.1 Fluid tubulence is observed
to contain small domains of very large vorticity, presumably created by this
stretching.

For a compressible fluid the volume of te tube need not be invariant, but
mass is conserved. Thus we have, introducing the initaial and final densities
ρ1, ρ2,

ρ1A1L1 = ρ1A2L2, ω1A1 = ω2A2. (3.24)

It follows that

ω2/ρ2

ω1/ρ1
= L2/L1. (3.25)

Thus we see that it is the magnitude of the material field, whether |ω| or ρ−1|ω|,
which is proportional to line length. Notice that in a compressible fluid vorticity
may be increased by compressing a tube while holding the length fixed, so as to
increase the density.

1This make chaotic flow, with positive Liapunov exponents, of great interest in amplifying
vorticity.
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Figure 3.2: Deformation of a vortex tube under a flow.

3.6 The velocity field created by a given vortic-

ity field

Suppose that in R3 the vorticity field is non-zero in some region and vanishes
at infinity. What is the velocity field or fields is created by this vorticity? It is
clear that given a vorticity field ω, and a vector field u such that ∇× u = ω,
another vector field with the same property is given by v = u + ∇φ for some
scalar field φ, uniqueness is an issue. However, under appropriate conditions a
unique construction is possible.

Theorem 2 Let the given vorticity field be smooth and vanish strongly at in-
finity, e.g. for some R > 0

|ω| ≤ Cr−N , r > R, r =
√

x2 + y2 + z2 (3.26)

Then there exists a unique solenoidal vector field u such that ∇ × u = ω and
limr→∞ |u| = 0. This vector field is given by

u =
1

4π

∫

R3

(y − x) × ω(y)

|x− y|3 dVy. (3.27)

To prove this consider the vector field v defined by

v =
1

4π

∫

R3

ω

|x− y|dVy. (3.28)
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This field exists and given (3.26) and can be differentiated if ω is a smooth
function. Let u = ∇× v. Now we have the vector identity

∇× (∇×A) = ∇(∇ ·A) −∇2A. (3.29)

The right-hand side of (3.28) is the unique solution of the vector equation ∇2v =
ω which vanishes at infinity. Also

div

∫

R3

ω · ∇x

1

|x− y|dVy = −
∫

R3

ω · ∇y

1

|x− y|dVy

= −
∫

R3

∇y ·
[

ω(y)

|x− y|
]

dVy = 0 (3.30)

by the divergence theorem and the fact that the integral of |ω| over r = R be
bounded in R in (3.26) holds. Thus u as defined by (3.27) satisfies ∇× u = ω.
as required. Also, this vector field is solenoidal since it is the curl of v, and
vanishes as |x| → ∞. And it is unique. Indeed if u′ is another vector field with
the same properties, then ∇× (u − u′) = 0 and so u − u′ = ∇φ for some scale
field whose gradient vanishes at infinity. But by the solenoidal property of u,u′

we see that ∇2φ = 0, and this implies φ = constant, giving the uniqueness of
u.

For compressible flows a general velocity field w with vorticity ω will have
the form w = u + ∇φ where u is given by (3.27) and φ is an arbitrary scalar
field.

The kernel
1

4π

(y − x) × (·)
|x− y|3 (3.31)

is interesting in the insight it gives into the creation of velocity as a cross product
operation. The velocity induced by a small segment of vortex tube is orthogonal
to both the direction of the tube and the vector joining the observation point
to the vortex tube segment. A similar law relates magnetic field created by an
electric cucrrent, where it is know as the Biot-Savart law.

3.7 Some examples of vortical flows

We end this chapter with a few examples of ideal fluid flows with non-zero
vorticity.

3.7.1 Rankine’s combined vortex

This old example is an interesting use of a vortical flow to model a “bath tub
vortex”, before the depression of the surface of the fluid develops a “hole”. It
will also give us an example of a flow with a free surface. The fluid is a liquid
of constant density ρ with a free surface given by z = Z(r) in cylindrical polar
coordinates, see figure 3.3. The pressure above the free surface is the constant
p0. The body force is gravitational, f = −giz . The vorticity is a solid-body
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rotation in a vertical tube bounded by r = a, z < Z. The only nonzero velocity
component it the θ-component uθ.

In r > a, z < Z Euler’s equations will be solved by the field of a two-
dimensional point vortex (actually a line vortex). This will be matched with a
rigid rotation for r < a so that velocity is continuous:

uθ =

{

Ωa2/r, when r ≥ a,
Ωr, when r < a.

(3.32)

Here Ω is the angular velocity of the core vortex. Now in the exterior region
r > a the flow is irrotational and so we have by the Bernoulli theorem for
irrotational flows

pext
ρ

=
p0

ρ
− 1

2
Ω2a4r−2 − gz, (3.33)

for z < Z, where we have taken Z = 0 at r = ∞. The free surface is thus given
for r > a by

Z = −Ω2a4

gr2
. (3.34)

Inside the vortex core, the equations reduce to

1

ρ

∂p

∂r
=
u2
θ

r
= Ω2r,

1

ρ

∂p

∂z
= g. (3.35)

Thus
1

2
Ω2r2 − gz +C ≡ pcore

ρ
, r < a, z < Z. (3.36)

On the cylinder r = a, z < Z we require that the pcore = pext, so

1

2
Ω2a2 − gz +C =

p0

ρ
− gz − 1

2
Ω2a2. (3.37)

Therefore the constant C is given by

C =
p0

ρ
− Ω2a2, (3.38)

and
pcore
ρ

=
p0

ρ
− Ω2a2

(

1 − r2

2a2

)

− gz. (3.39)

The free surface is then given by

Z =







−a4Ω2

2gr2 , when r ≥ a,

Ω2a2

g

(

r2

2a2 − 1
)

, when r < a./cr
(3.40)

We have used the adjective “combined” to emphasize that this vortex flow
is an example of a solution of the equations of motions which is not smooth,
since duθ/dr is not continuous at r = a, z < Z. Since all other components
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Figure 3.3: Rankine’s combined vortex

of velocity are zero and the pressure is the only variable with a z-dependence,
the equation are in fact satisfied everywhere. In a real, viscous fluid, if the
ideal flow was taken as an initial condition, the irregularity at r = a would be
immediately smoothed out by viscous stresses. The ideal fluid solution would
nonetheless be a good representation of the flow for some time, until the vortex
core is substantially affected by the viscosity.

3.7.2 Steady propagation of a vortex dipole

We consider steady two-dimensional flow of an ideal fluid of constant density,
no body force. Since then u · ∇ω = 0, introducing the stream function ψ,
(u, v) = (ψy,−ψx), we have

ψy(∇2ψ)x − ψx(∇2ψ)y = 0. (3.41)

Consequently contours of constant ψ and of constant ω must agree, and so

∇2ψ = f(ψ). (3.42)

where the function f is arbitrary. We will look for solutions of the simplest
kind, by choosing f = −k2ψ, where k is a constant. Using polar coordinates,
we look for solutions of the equation ∇2ψ + k2ψ in the disc r < a, which can
match with the velocity in r > a that is the same as irrotational flow past a
circular body of radius a. That potential flow is easily re-expressed in terms of
the stream function, since we see that in irrotational flow, where our function f
vanishes, the stream function is harmonic. We then have

ψ = Uy
(

1 − a2

r2
)

= U sin θ
(

r − a2

r

)

. (3.43)

Setting ψ = h(r) sin θ in ∇2ψ + k2ψ = 0 we we obtain the ODE for the Bessel
functions of order 1. A solution regular in r < a is therefore h = CJ1(kr). Ths

ψ = C sin θJ1(kr). (3.44)

Also

ω = Ck2 sin θJ1(kr). (3.45)
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Figure 3.4: A propagating vortex dipole.

We have two constants to determine, and we will do this by requiring that
both ω and uθ be continuous on r = a. The condition on ω requires that
J1(ka) = 0. We thus choose ka to be the smallest zero if J1, ka ≈ 3.83.

The constant C is determined by the requirement that uθ be continuous on
r = a. Now uθ = − sin θ ψy − cos θ ψx = −ψr , and

d

dr
J1(kr) = −k−1 d

2

dz2
J0(z)

∣

∣

∣

z=kr
= k−1

(1

z

dJ0

dz
+J0

)

z=kr
= k−1

(

−1

z
J1+J0

)

z=kr
.

(3.46)
Thus

d

dr
J1(kr)

∣

∣

∣

r=a
= k−1J0(ka). (3.47)

The condition that ψr be continuous on r = a thus becomes

C = 2k−1 U

J0(ak)
. (3.48)

Thus

ω = −∇2ψ =
2kU

J0(ak)
sin θJ1(kr). (3.49)

Since J0(3.83) ≈ −.403 we see that the constant multiplier in this last equation
has a sign of opposite to that of U . Let us see if this makes sense. If U were
negative, then the vorticity in the upper half of the disc would be positive.
A positive vorticity implies an eddy rotating counterclockwise. This vorticity
induces the vortex in the lower half of the disc to move to the right. Similarly
the negative vorticity in the lower half of the disk causes the upper vortex to
move to the right. Thus the vortex dipole propagates to the right, and in the
frame moving with the dipole U is negative.
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3.7.3 Axisymmetric flow

We turn now to a large class of vortical flows which are probably the simplest
flows allowing vortex stretching, namely the axisymmetric Euler flows. These
are solutions of Euler’s equations in cylindrical polar coordinates (z, r, θ), under
the assumption that all variables are independent of the polar angle θ. Euler’s
equations for the velocity u = (uz, ur, uθ) in cylindrical polar coordinates are

∂uz
∂t

+ u · ∇uz +
1

ρ

∂p

∂z
= 0, (3.50)

∂ur
∂t

+ u · ∇ur −
u2
θ

r
+

1

ρ

∂p

∂r
= 0, (3.51)

∂uθ
∂t

+ u · ∇uθ +
uruθ
r

+
1

ρr

∂p

∂θ
= 0, (3.52)

where

u · ∇(·) =
[

uz
∂

∂z
+ ur

∂

∂r
+
uθ
r

∂

∂θ

]

(·). (3.53)

We take the density to be constant, so the solenoidal condition applies in the
form

∂uz
∂z

+
1

r

∂rur
r

+
1

r

∂uθ
∂θ

= 0. (3.54)

The vorticity vector is given by

(ωz, ωr, ωθ) =
[1

r

∂ruθ
∂r

− 1

r

∂ur
∂θ

,
1

r

∂uz
∂θ

− ∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

]

. (3.55)

The vorticity equation is

∂ω

∂t
+

[

u ·∇ωz,u ·∇ωr,u ·∇ωθ+
uθωr
r

]

−
[

ω ·∇uz,ω ·∇ur,ω ·∇uθ+
urωθ
r

]

= 0.

(3.56)
In the axisymmetric case we thus have

∂uz
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uz +
1

ρ

∂p

∂z
= 0, (3.57)

∂ur
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

ur −
u2
θ

r
+

1

ρ

∂p

∂r
= 0, (3.58)

∂uθ
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uθ +
uruθ
r

= 0, (3.59)

∂uz
∂z

+
1

r

∂rur
r

= 0. (3.60)

(ωz, ωr, ωθ) =
[1

r

∂ruθ
∂r

,−∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

]

(3.61)
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If the swirl velocity component uθ vanishes, the system simplifies further:

∂uz
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uz +
1

ρ

∂p

∂z
= 0, (3.62)

∂ur
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

ur +
1

ρ

∂p

∂r
= 0, (3.63)

∂uz
∂z

+
1

r

∂rur
r

= 0. (3.64)

(ωz, ωr, ωθ) =
[

0, 0,
∂ur
∂z

− ∂uz
∂r

]

. (3.65)

Note that the only nonzero component of vorticity is ωθ. The vortex lines are
therefore all rings with a common axis, the z−axis. The vorticity equation now
has the form

∂ωθ
∂t

+ uz
∂ωθ
∂z

+ ur
∂ωθ
∂r

− urωθ
r

= 0. (3.66)

The last equation may be rewritten

D

Dt

ωθ
r

= 0,
D

Dt
=

∂

∂t
+ uz

∂

∂z
+ ur

∂

∂r
. (3.67)

Thus ωθ

r
is a material invariant of the flow. We can easily interpret the meaning

of this fact. A vortex ring of radius r has length 2πr, and the vorticity associated
with a given ring is a constant ωθ. But the vorticity of a line is proportional
to the line length (recall the increase of vorticity by line stretching). Thus the
ratio ωθ

2πr must be constant on a given vortex ring. Since vortex rings move with
the fluid, ωθ

r
is a material invariant.

To compute axisymmetric flow without swirl we can introduce the stream
function ψ for the solenoidal velocity in cylindrical polar coordinates:

uz =
1

r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
. (3.68)

This ψ is often referred to as the Stokes stream function. Then

ωθ = −1

r
L(ψ), L ≡ ∂2

∂z2
+

∂2

∂r2
− 1

r

∂

∂r
. (3.69)

In the steady case, the vorticity equation gives

[1

r

∂ψ

∂r

∂

∂z
− 1

r

∂ψ

∂z

∂

∂r

] 1

r2
L(ψ) = 0. (3.70)

Thus a family of steady solutions can be obtained by solving any equation of
the form

L(ψ) = r2f(ψ), (3.71)
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where f is an arbitrary function, for the stream function ψ. The situation
here is closely analogous to the steady two-dimensional case, see the previous
subsection.

Now turning to axisymmetric flow with swirl, the instantaneous streamline
and vortex lines can now be helices and a much larger class of Euler flows results.
The same stream function applies. The swirl velocity satisfies, from (3.59)

Druθ
Dt

= 0,
D

Dt
=

∂

∂t
+ uz

∂

∂z
+ ur

∂

∂r
. (3.72)

We can understand the meaning of (3.72) using Kelvin’s theorem. First note
that a ring of fluid particles initially on a given circle C defined by initial values
of z, r, will stay on the same circular ring as it evolves. The uθ component takes
the ring into itself, and the (uz, ur, 0) sub-field determines the trajectory C(t) of
the ring, and thus the ring evolves as a material curve. Since uθ is constant on
the ring, the circulation on C(t) is 2πruθ. By Kelvin’s theorem, this circulation
is a material invariant, and we obtain (3.72).

In the case of steady axisymmetic flow with swirl we see from (3.72) that we
may take

ruθ = g(ψ), (3.73)

where the function g is arbitrary. Bernoulli’s theorem for steady flow with
constant density gives

1

2
|u|2 +

p

ρ
= H(ψ), (3.74)

stating that the Bernoulli function H is constant on streamlines. From the
momentum equation in the form ∇H−u×ω = 0 we get, from the z-component
e.g.:

urωθ − uθωr =
∂H

∂z
. (3.75)

Using the expressions for the components of vorticity and expressing everything
in terms of the stream function, we get from (3.73) and (3.75)

1

r2
∂ψ

∂z
+

1

r2
g
dg

dψ

∂ψ

∂z
=
dH

dψ

∂ψ

∂z
. (3.76)

Eliminating the common factor ∂ψ
∂z

and rearranging,

L(ψ) = r2f(ψ) − g
dg

dψ
, f(ψ) =

dH

dψ
. (3.77)

Thus two arbitrary functions, f, g are involved and any solution of (3.77) deter-
mines a steady solution in axisymmetric flow with swirl.

Problem set 3

1. Consider a fluid of constant density in two dimensions with gravity, and
suppose that the vorticity vx−uy is everywhere constant and equal to ω. Show
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that the velocity field has the form (u, v) = (φx + χy, φy − χx) where φ is
harmonic and χ is any function of x, y (independent of t), satisfying ∇2χ = −ω.
Show further that

∇(φt +
1

2
q2 + ωψ + p/ρ+ gz) = 0

where ψ is the stream function for u, i.e. u = (ψy,−ψx), and q2 = u2 + v2.

2. Show that, for an incompressible fluid, but one where the density can
vary independently of pressure (e.g. salty seawater), the vorticity equation is

Dω

Dt
= ω · ∇u + ρ−2∇ρ×∇p.

Interpret the last term on the right physically. (e.g. what happens if lines of
constant p are y = constant and lines of constant ρ are x− y =constant?). Try
to understand how the term acts as a source of vorticity, i.e. causes vorticity to
be created in the flow.

3. For steady two-dimensional flow of a fluid of constant density, we have

ρu · ∇u + ∇p = 0,∇ · u = 0.

Show that, if u = (ψy ,−ψx), these equations imply

∇ψ ×∇(∇2ψ) = 0.

Thus, show that a solution is obtained by giving a function H(ψ) and then
solving ∇2ψ = H ′(ψ). Show also that the pressure is given by p

ρ
= H(ψ) −

1
2 (∇ψ)2+constant.

4. Prove Ertel’s theorem for a fluid of constant density: If f is a scalar
material invariant, i.e. Df/Dt = 0, then ω · ∇f is also a material invariant,
where ω = ∇× u is the vorticity field.

5. A steady Beltrami flow is a velocity field u(x) for which the vorticity
is always parallel to the velocity, i.e. ∇ × u = f(x)u for some scalar function
f . Show that if a steady Beltrami field is also the steady velocity field of an
inviscid fluid of constant density, the necessarily f is constant on streamlines.
What is the corresponding pressure? Show that u = (Bsiny+C cos z, C sin z+
A cos x, A sinx + B cos y) is such a Beltrami field with f = −1. (This last flow
an example of a velocity field yielding chaotic particle paths. This is typical of
3D Beltrami flows with constant f , according to a theorem of V. Arnold.)

6. Another formula exhibiting a vector field u = (u, v, w) whose curl is
ω = (ξ, η, ζ), where ∇ · ω = 0, is given by

u = z

∫ 1

0

tη(tx, ty, tz)dt− y

∫ 1

0

tζ(tx, ty, tz)dt,
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v = x

∫ 1

0

tζ(tx, ty, tz)dt− z

∫ 1

0

tξ(tx, ty, tz)dt,

w = y

∫ 1

0

tξ(tx, ty, tz)dt− x

∫ 1

0

tη(tx, ty, tz)dt.

Verify this result. (Note that u will not in general be divergence-free, e.g. check
ξ = ζ = 0, η = x. A derivation of this formula, using differential forms, may be
found in Flanders’ book on the subject.)

7. In this problem the object is to find a 2D propagating vortex dipole
structure analogous to that studied in subsection 3.6.2. In the present case, the
structure will move clockwise on the circle of radius R with angular velocity
Ω. Consider a rotating coordinate system and a circular structure of radius
a, stationary and with center at (0, R). Relative to the rotating system the
velocity tends to Ω(−y, x) = Ω(−y′, x)+ΩR(−1, 0), y′ = y−R. It turns out that
(assuming constant density), the momentum equation relative to the rotating
frame can be reduced to that in the non-rotating frame in that the Coriolis force
can be absorbed into the gradient of a modified pressure, see a later chapter.
Thus we again take ∇2ψ + k2ψ = 0, r′ < a. Here r′ =

√

(y′)2 + x2. A new
term proportional to J0(kr) must now be included. We require that uθ aAand
ω must be continuous on r′ = a. Show that, relative to the rotating frame,

ψ =

{

− 2RΩ
kJ0(ak)

sin θJ1(kr
′) + 2Ω

k2J0(ka)
J0(kr

′), if r′ < a,

−Ω
2 r

′2 − ΩR(r′ − a2/r′) + Ωa2 ln r′ +C, if r′ ≥ a.
(3.78)
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Chapter 4

Potential flow

Potential or irrotational flow theory is a cornerstone of fluid dynamics, for two
reasons. Historically, its importance grew from the developments made possible
by the theory of harmonic functions, and the many fluids problems thus made
accessible within the theory. But a second, more important point is that po-
tential flow is actually realized in nature, or at least approximated, in many
situations of practical importance. Water waves provide an example. Here fluid
initially at rest is set in motion by the passage of a wave. Kelvin’s theorem
insures that the resulting flow will be irrotational whenever the viscous stresses
are negligible. We shall see in a later chapter that viscous stresses cannot in gen-
eral be neglected near rigid boundaries. But often potential flow theory applies
away from boundaries, as in effects on distant points of the rapid movements of
a body through a fluid.

An example of potential flow in a barotropic fluid is provided by the theory
of sound. There the potential is not harmonic, but the irrotational property
is acquired by the smallness of the nonlinear term u · ∇u in the momentum
equation. The latter thus reduces to

∂u

∂t
+

1

ρ
∇p ≈ 0. (4.1)

Since sound produces very small changes of density, here we may take ρ to be will
approximated by the constant ambient density. Thus u = ∇φ with ∂φ

∂t
= −p/ρ.

4.1 Harmonic flows

In a potential flow we have
u = ∇φ. (4.2)

We also have the Bernoulli relation (for body force f = −ρ∇Φ)

φt +
1

2
(∇φ)2 +

∫

dp

ρ
+ Φ = 0. (4.3)

47
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Figure 4.1: A domain V , bounded by surfaces Si,o where ∂φ
∂n

is prescribed.

Finally, we have conservation of mass

ρt + ∇ · (ρ∇φ) = 0. (4.4)

The most extensive use of potential flow theory is to the case of constant density,
where ∇ · u = ∇2φ = 0. These harmonic flows can thus make use of the highly
developed mathematical theory of harmonic functions. in the problems we study
here we shall usually consider explicit examples where existence is not an issue.
On the other hand the question of uniqueness of harmonic flows is an important
issue we discuss now. A typical problem is shown in figure 4.1.

A harmonic function φ has prescribed normal derivatives on inner and outer
boundaries Si, So of an annular region V . The difference ud = ∇φd of two
solutions of this problem will have zero normal derivatives on these boundaries.
That the difference must in fact be zero throughout V can be established by
noting that

∇ · (φd∇φd) = (∇φd)2 + φd∇2φd = (∇φd)2. (4.5)

The left-hand side of (4.5) integrates to zero over V to zero by Gauss’ theo-
rem and the homogeneous boundary conditions of ∂φd

∂n
. Thus

∫

V
(∇φd)2dV = 0,

implying ud = 0.
Implicit in this proof is the assumption that φd is a single-value function. A

function φ is single-valued in V if and only if
∮

C
dφ = 0 on any closed contour

C contained in V . In three dimensions this is insured by the fact that any such
contour may be shrunk to a point in V . In two dimensions, the same conclusion
applies to simply-connected domains. In non-simply connect domains uniqueness
of harmonic flows in 2DS is not assured. Note for a harmonic flow

∮

C

dφ =

∮

C

u · dx = ΓC , (4.6)

so that a potential which is not single valued is associated with a non-zero
circulation on some contour. Since there is no vorticity within the domain of
harmonicity, we must look outside of this domain to find the vorticity giving
rise to the circulation.
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Example 4.1: The point vortex of problem 1.2 is an example of a flow
harmonic in a non-simply connected domain which excludes the origin. If
u = 1

2π
(−y/r2, x/r2) then the potential is θ

2π
+ constant and the circulation

on an simply closed contour oriented counter-clockwise is 1. This defines the
point vortex of unit circulation. Here the vorticity is concentrated at the origin,
outside the domain of harmonicity.

Example 4.2 Steady two-dimensional flow harmonic flow with velocity
(U, 0) at infinity, past a circular cylinder of radius a centered at the origin,
is not unique. The flow of example 2.4 plus an arbitrary multiple of the point
vortex flowof example 4.1 will again yield a flow with the same velocity at in-
finity, and still tangent to the boundary r = a:

φ = Ux(1 + a2/r2) +
Γ

2π
θ. (4.7)

4.1.1 Two dimensions: complex variables

In two dimensions harmonic flows can be studied with the powerful apparatus of
complex variable theory. We define the complex potential as an analytic function
of the complex variable z = x+ iy:

w(z) = φ(x, y) + iψ(x, y). (4.8)

We will suppress t in our formulas in the case when the flow is unsteady. If we
identify φ with the potential of a harmonic flow, and ψ with the stream function
of the flow, then by our definitions of these quantities

(u, v) = (φx, φy) = (ψy,−ψx), (4.9)

yielding the Cauchy-Riemann equations φx = ψy, φy = −ψx. The derivative of
w gives the velocity components in the form

dw

dz
= w′(z) = u(x, y) − iv(x, y). (4.10)

Notice that the Cauchy-Riemann equations imply that ∇φ · ∇ψ = 0 at every
point where the partials are defined, implying that the streamlines are there
orthogonal to the lines of constant potential φ.

Example 4.3: The uniform flow at an angle α to the horizontal, with
velocity Q(cosα, sinα) is given by the complex potential w = Qze−iα.

Example 4.4: In complex notation the harmonic flow of example 4.2 may
be written

w = U(z + a2/z) − iΓ

2π
log z (4.11)

where e.g. we take the principle branch of the logarithm function.

As a result of the identification of the complex potential with an analytic
function of a complex variable, the conformal map becomes a valuable tool in
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Figure 4.2: Flow onto a wedge of half-angle α.

the construction of potential flows. For this application we may start with the
physical of z-plane, where the complex potential w(z) is desired. A conformal
map z → Z transforms boundaries and boundary conditions and leads to a
problem which can be solved to obtain a complex potential W (Z). Under the
map values of ψ are preserved, so that streamlines map onto streamlines.

Example 4.5: The flow onto a wedge-shaped body (see figure 4.2). Consider
in the Z plane the complex potential of a uniform flow,−UZ, U > 0. The region
above upper surface of the wedge to the left, and the and the positive x-axis to
the right, is mapped onto the upper half-plane Y >) by the function Z = z

π
π−α .

Thus w(z) = −Uz π
π−α .

Example 4.6: The map z(Z) = Z+ b2

Z
maps the circle of radius a > b in the

Z-plane onto the ellipse of semi-major axis a2+b2

a
and semi-minor (y)-axis a2−b2

a

in the z-plane. And the exterior is mapped onto the exterior. Uniform flow
with velocity (U, 0)at infinity, past the circular cylinder |Z| = a, has complex
potential W (Z) = U(Z + a2/Z). Inverting the map and requiring that Z ≈ z
for large |z| gives Z = 1

2 (z +
√
z2 − 4b2). Then w(z) = W (Z(z)) is the complex

potential for uniform flow past the ellipse. Notice how the map satisfies dz
dZ

→ 1
as z → ∞ This insures that that infinity maps by the identity and so the uniform
flow imposed on the circular cylinder is also imposed on the ellipse.

4.1.2 The circle theorem

We now state a result which gives the mathematical realization of the physical
act of “placing a rigid body in an ideal fluid flow”, at least in the two-dimensional
case.

Theorem 3 Let a harmonic flow have complex potential f(z), analytic in the
domain |z| ≤ a. If a circular cylinder of radius a is place at the origin, then the

new complex potential is w(z) = f(z) + f
(

a2

z̄

)

.

To show this we need to establish that the analytical properties of the new
flow match those of the old, in particular that the analytic properties and the
singularities in the flow are unchanged. Then we need to verify that the surface
of the circle is a streamline. Taking the latter issue first, note that on the circle
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a2

z̄
= z, so that there we have w = f(z)+f(z), implying ψ = 0 and so the circle

is a streamline. Next, we note that the added term is an analytic function of z if
it is not singular at z. (If f(z) is analytic at z, so is f(z̄). As for the location of

singularities of w, since f is analytic in |z| ≤ a it follows that f
(

a2

z

)

is analytic

in |z| ≥ a, and the same is true of f
(

a2

z̄

)

. Thus the only singularities of w(z)

in |z| > a are those of f(z).

Example 4.7: If a cylinder of radius a is placed in a uniform flow, then
f = Uz and w = Uz + U(a2/z̄) = U(z + a2/z) as we already know. If a
cylinder is placed in the flow of a point source at b > a on the x-axis, then
f(z) = Q

2π ln(z − b) and

w(z) =
Q

2π
(ln(z−b)+ln

(a2

z̄
− b

)

=
Q

2π
(ln(z−b)+ln(z−a2/b)−lnz)+C, (4.12)

where C is a constant. From this form it may be verified that the imaginary
part of w is constant when z = aeiθ. Note that the image system of the source,
with singularities within the circle, consists of a source of strength Q at the
image point a2/b, and a source of strength −Q at the origin.

Example 4.8: A point vortex at position zk of circulation Γk has the com-
plex potential wk(z) = −iΓk

2π ln(z−zk). A collection of N such vortices will have

the potential w(z) =
∑N

k=1 wk(z). Since vorticity is a material scalar in two-
dimensional ideal flow, and the delta-function concentration may be regarded
as the limit of a small circular patch of constant vorticity, we expect that each
vortex must move with he harmonic flow created at the vortex by the other
N −1 vortices. Thus the positions zk(t) of the vortices under this law of motion
is governed by the system of N equations,

dzj
dt

=
−i
2π

N
∑

k=1,k 6=j

Γk
z − zk

. (4.13)

Note the conjugation on the left coming from the identity w′ = u− iv.

4.1.3 The theorem of Blasius

An important calculation in fluid dynamics is the force exerted by the fluid on
a rigid body. In two dimensions and in a steady harmonic flow this calculation
can be carried out elegantly using the complex potential.

Theorem 4 Let a steady uniform flow past a fixed two-dimensional body with
bounding contour C be a harmonic flow with velocity potential w(z). Then, if
no external body forces are present, the force (X, Y ) exerted by the fluid on the
body is given by

X − iY =
iρ

2

∮

C

(dw

dz

)2

dz. (4.14)



52 CHAPTER 4. POTENTIAL FLOW

Here the integral is taken round the contour in the counter-clockwise sense.
This formula, due to Blasius, reduces the force calculation to a complex contour
integral. Since the flow is harmonic, the path of integration may be distorted to
any simple closed contour encircling he body, enabling the method of residues
to be applied. The exact technique will depend upon whether are not the are
singularities in the flow exterior to the body.

To prove the result, first recall that dX − idY = p(−dy − idx) = −ipdz̄.
Also, Bernoulli’s theorem for steady ideal flow applies, so that

p = −ρ
2

∣

∣

∣

dw

dz

∣

∣

∣

2

+C, (4.15)

where clearly the constant C will play no role. Thus

X − iY =
iρ

2

∮

C

dw

dz

dw

dz
dz̄. (4.16)

However, the contour C is a streamline, so that dψ = 0 there, and so on C we

have dw
dz
dz̄ = dw̄ = dw = dw

dz
dz. using this in (4.16) we obtain (4.14).

Example 4.9: We have found in problem 2.1 that the force on a circular
cylinder in a uniform flow is zero. To verify this using Blasius’ theorem, we set

w = U
(

z + a2

z

)

so that U2
(

1− a2

z2

)

2 is to be integrated around C. Since there

is no term proprotional to z−1 in the Laurent expansion about the origin, the
residue is zero and we get no contribution to the force integral.

Example 4.10: Consider a source of strength Q placed at (b, 0) and intro-
duce a circular cylinder of radius a < b into the flow. From example 4.6 we
have

dw

dz
=

1

z − b
+

1

z − a2/b
− 1

z
. (4.17)

Squaring, we get

1

(z − b)2
+

1

(z − a2/b)2
+

1

z2
+

2

(z − b)(z − a2/b)
− 2

z(z − a2/b)
− 2

z(z − b)
. (4.18)

The first three terms to not contibute to the integral around the circle |z| = a.
For the last three, the partial fraction decomposition is

A

z − b
+

B

z − a2/b
+
C

z
, (4.19)

where we compute A = 2a2

(b2−a2)b , B = 2b3

a2(a2−b2) , C = 2(a2+b2)
a2b

. The contributions

come from the poles within the circle and we have

X − iY =
iρ

2

Q2

4π2
2πi(B +C) =

Q2ρ

2π

a2

b(b2 − a2)
. (4.20)

The cylinder is therefore feels a force of attraction toward the source.
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This introduction to the use of complex variables in the analysis of two-
dimenisonal harmonic flows will provide the groundwork for a discussion of lift
and airfoil design, to be taken up in chapter 5.

4.2 Flows in three dimensions

We live in three dimensions, not two, and the “flow past body” problem in two
dimensions introduces a domain which is not simply connected, with important
consequences. The relation between two and three-dimensional flows is partic-
ularly significant in the generation of lift, as we shall see in chapter 5. In the
present section we treat topics in three dimensions which are direct extensions
of the two-dimensional results just given. They pertain to bodies, such as a
sphere, which move in an irrotational, harmonic flow.

4.2.1 The simple source

The source of strength Q in three dimensions satisfies

div u = Qδ(x), u = ∇φ. (4.21)

Here δ(x) = δ(x)δ(y)δ(z) is the three-dimensional delta function. It has the
following properties: (i) It vanishes if x 6= 0. (ii) Any integral of δ(x) over
an open region containing the origin yields unity. It is best to think of all
relations involving delta functions and other distributions as limits of relations
using smooth functions.

In our case, integrating ∇2φ = Qδ(x) over a sphere of radius R0 > 0 we get

∫

R=R0

∂φ

∂n
dS = Q. (4.22)

Since ∇2φ = 0,x 6= 0, and since the delta function must be regarded as an
isotropic distribution, having no exceptional direction, we make the guess (
using now ∇2φ = R−1d2(Rφ)/dR2) that φ = C/R,R2 = x2 + y2 + z2 for some
constant C. Then (4.22) shows that C = − Q

4π . Thus the simple source in three
dimensions, of strength Q, has the potential

φ = − Q

4π

1

R
. (4.23)

Note that Q is equal to the volume of fluid per unit time crossing any deforma-
tion of a spherical surface, assuming the deformed surface surounds the origin.
1

1We indicate how to justify this calculation using a limit operation. Define the three-
dimensional delta function by limε→0 δε(R) where δε = 3

2πε3
1

1+(R/ε)3
. Solving ∇

2φε = δε =

R−2 d
dR

(

R2 dφε

dR

)

, under the condition that φε vanish at infinity, we obtain φε = −
1

4πR
+

∫

∞

R
R−2

[

tan−1(R3ε−3) − π/2
]

dR. For any positive R the integral tends to zero as ε → 0.
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Figure 4.3: The Rankine fairing. All lengths are in units of k.

4.2.2 The Rankine fairing

We consider now a simple source of strength Q placed at the origin in a uniform
flow W iz. The combined potential is then

φ = Uz − Q

4π

1

R
. (4.24)

The flow is clearly symmetric about the z-axis. In cylindrical polar coordinates
(z, r, θ), r2 = x2 + y2 we introduce again the Stokes stream function ψ:

uz = φz =
1

r

∂ψ

∂r
, ur = φr = −1

r

∂ψ

∂z
. (4.25)

Thus for (4.24) we have
1

r

∂ψ

∂r
= U +

Q

4π

z

R3
. (4.26)

Integrating,

ψ = Ur2/2 − Q

4π

( z

R
+ 1

)

. (4.27)

In (4.27) we have chosen the constant of integration to make ψ = 0 on the
negative z-axis.

We show the stream surface ψ = 0, as well as several stream surfaces ψ > 0,
in figure 4.3. This gives a good example of a uniform flow over a semi-infinite
body. An interesting question is whether or not such a body would experience
a force. We will find below that D’Alembert’s paradox applies to finite bodies
in three dimensions, that the drag force is zero, but it is not obvious that the
result applies to bodies which are not finite.

We will use this question to illustrate the use of conservation of momentum
to calculate force on a distant contour. In figure 4.4 the large sphere S of radius
R0 is centered at the origin and intersects the fairing on the at a circle bounding
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Figure 4.4: Geometry of the momentum integral for computation of the force
on the Rankine fairing.

the disc A. Let S′ be the spherical surface S minus hat part within the boundary
of A. We are considering steady harmonic flow and so the momentum equation
may be written

∂

∂xj
[ρui uj + p ] = 0. (4.28)

Let V ′ be the region bounded by S′ and the piece of fairing enclosed. Integrating
(4.28) over V ′ and using the divergence theorem., the contribution from the
surface of the fairing is the integral −np over this surface, where n is the outer
normal of the fairing. Thus this contribution is the force F experienced by the
enclosed piece of fairing, a force clearly directed along the z axis and therefore
equal to the drag, F = Diz . The remainder of the integral, taking only the
z-component, takes the form of an integral over S minus the contribution from
A. Thus conservation of momentum gives

D+ ρ

∫

S

uzu · R/R+
1

2

[

U2 − |u|2
] z

R
dS − ρIA = 0. (4.29)

We have here using the Bernoulli formula for the flow, p + 1
2
|u|2 = 1

2
U2, the

pressure at infinity being taken to be zero. Treating first the integral over S,
we have

u = U iz +
Q

4π

R

R3
, |u|2 = U2 +

UQ

2π

z

R3
+

Q2

16π2

1

R4
. (4.30)

Thus the integral in question becomes

∫

S

(

U +
Q

4π

z

R3

)(Uz

R
+
Q

4π

1

R2

)

− 1

4π

(

UQ
z2

R4
+

1

8π

Q2z

R5

)

dS. (4.31)

We see that this last integral gives UQ+ 1
2
UQ − 1

2
UQ = UQ. For the contri-

bution IA, we take the limit R0 → ∞ to obtain IA = U2πr2∞, where r∞ is the
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Figure 4.5: Flow around an airship.

asymptotic radius of the airing as z → ∞. In this limit D′ → D, the total drag
of the fairing. Thus the momentum integral method gives

D + ρ(UQ − U2πr2∞) = 0. (4.32)

But from (4.27) we see that the stream surface ψ = 0 is given by

z =
r2 − 1

2
k2

√
k2 − r2

, k2 =
Q

πU
. (4.33)

Thus r∞ = k, and (4.32) becomes

D + ρ(UQ − UQ) = D = 0, (4.34)

so the drag of the fairing is zero.

Example 4.11: The flow considered now typifies the early attempts to
model the pressure distribution of an airship. The model consists of a source
of strength Q at position z = 0 on the z-axis, and a equalizing sink (source of
strength −Q) at the pint z = 1 on the z-axis. Since the source strengths cancel,
a finite body is so defined when the singularities are place in the uniform flow
U iz . It can be shown (see problem 4.7 below), that stream surfaces for the flow
are given by constant values of

Ψ =
U

2
R2 sin2 θ − Q

4π

(

cos θ+
1 − R cos θ√

R2 − 2R cos θ + 1

)

, (4.35)

where R, θ are spherical polars at the origin, with axial symmetry. We show the
stream surfaces in figure 4.4.
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4.2.3 The Butler sphere theorem.

The circle theorem for two-dimensional harmonic flows has a direct analog in
three dimensions.

Theorem 5 Consider an axisymmetric harmonic flow in spherical polars (R, θ, ϕ),
uϕ = 0, with Stokes stream function Ψ(R, θ) vanishing at the origin:

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ =

−1

R sin θ

∂Ψ

∂R
. (4.36)

If a rigid sphere of radius a is introduced into the flow at the origin, and if the
singularities of Ψ exceed a in distance from the origin, then the stream function
of the resulting flow is

Ψs = Ψ(R, θ) − R

a
Ψ(a2/R, θ). (4.37)

It is clear that Ψs vanishes when R = a, so the surface of the sphere is a
stream surface. Also the added term introduces no new singularities outside the
sphere. Thus the theorrm is proved if we can verify that R

a
Ψ(a2/R, θ) represents

a harmonic flow. In spherical polars with axial symmetry the only component
of vorticity is

ωϕ =
1

R

[∂(Ruθ)

∂R
− ∂uR

∂θ

]

. (4.38)

Thus the condition on Ψ for an irrotational flow is

R2∂
2Ψ

∂R2
+ sin θ

∂

∂θ

( 1

sin θ

∂Ψ

∂θ

)

≡ LRΨ = 0. (4.39)

If R
a
Ψ(a2/R, θ) is inserted into (4.39) we can show that the equation is satisfied

provided it is satisfied by Ψ(R, θ), see problem 4.8. Finally, since Ψ(R, θ) van-
ishes at the origin at least as R, RΨ(a2/R, θ is bounded at infinity and velocity
component must decay as O(R−2), so the uniform flow there is undisturbed.

Example 4.12: A sphere in a uniform flow U iz has Stokes stream function

Ψ(R, θ) =
U

2
R2 sin2 θ

[

1 − a3

R3

]

. (4.40)

This translates into the following potential:

φ = Uz
(

1 +
1

2

a3

R3

)

. (4.41)

Example 4.13: Consider a source of strength Q place on the z axis at z = b
and place a rigid sphere of radius a < b at the origin. The streamfunction for
this source which vanishes at the origin is

Ψ(R, θ) = − Q

4π
(cos θ1 + 1), (4.42)
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Figure 4.6: A a sphere of radius a in the presence of a source at z = b > a.

where θ1 is defined in figure 4.6.
Now from the law of cosines and figure 4.6 we have

R cos θ − b = R1 cos θ1, R2
1 = b2 − 2bR cos θ +R2. (4.43)

Thus

cos θ1 =
R cos θ − b√

b2 − 2bR cos θ+ R2
. (4.44)

Thus the stream function including the sphere, Ψs, is given by

Ψs = − Q

4π

[ R cos θ− b√
b2 − 2bR cos θ + R2

+ 1
]

+
Q

4π

R

a

[ a2

R
cos θ − b

√

b2 − 2ba
2

R
cos θ + a4

R2

+ 1
]

.

(4.45)

Now, again using the law of cosines,
√

b2 − 2ba
2

R
cos θ + a4

R2 = bR2/R. Also we

may use R2 = R2
2 + 2a

2

b
R cos θ − a4

b2
. Then Ψs may be brought into the form

Ψs = − Q

4π

[R cos θ − b

R1
+ 1

]

− a

b

Q

4π

[R cos θ − a2

b

R2

]

+
Q

4π

[R− R2

a

]

. (4.46)

The first term on the right is the source of strength Q at z = b. The second term
is another source, of strength a

b
Q, at the image point z = a2/b. The last term

can be understood as a line distribution of sinks of density Q
4πa

, extending from
the origin to the image point a2/b. Indeed, if a point P on this line segment
is associated with an angle θP , the the contribution from such a line of sinks
would be

Q

4πa

∫ a2

b

0

cos θP dz. (4.47)

But dR = − cos θP dz, so the integral becomes

− Q

4πa

∫ R2

R

dR =
Q

4πa
(R− R2). (4.48)
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4.3 Apparent mass and the dynamics of a body

in a fluid

Although harmonic flow is an idealization never realized exactly in actual fluids
(except in some cases of super fluid dynamics), it is a good approximation in
many fluid problems, particularly when rapid changes occur. A good example is
the abrupt movement of a solid body through a fluid, for example a swimming
stroke of the hand. We know from experience that a abrupt movement of the
hand through water gives rise to a force opposing the movement. It is easy to see
why this must be, within the theory of harmonic flows. An abrupt movement of
the hand through still water causes the fluid to move relative to a observer fixed
with the still fluid at infinity. This observer would therefore compute at the
instant the hand is moving a finite kinetic energy of the fluid, whereas before
the movement began the kinetic energy was zero. To produce this kinetic energy
work must have been done, and so a force with a finite component opposite to
the direction of motion must have occurred. We are here dealing only with the
fluid, but if the body has mass the clearly a force is also needed to accelerate
that mass. Thus both the body mass and the fluid movement contribute to the
force experienced.

In a harmonic flow we shall show that, in the absence of external body
forces, the force on a rigid body is proportional to its acceleration, and further
the force contributed by the fluid can be expressed as an addition, apparent
mass of the body. In other words the augmented force due to the presence of
the surrounding fluid and the energy it acquires during motion of a body, can be
explained as an inertial force associated with additional mass and the work done
against that force. The term virtual mass is also used to denote this apparent
mass. For a sphere, which has an isotropic geometry with no preferred direction,
the apparent mass is just a scalar to be added to the physical mass. In general,
however, the apparent mass associated with the momentum of a body in two
or three dimensions will depend on the direction of the velocity vector. It thus
must be a second order tensor, represented by the apparent mass matrix.

4.3.1 The kinetic energy of a moving body

Consider an ideal fluid at rest and introduce a moving rigid body, in two or
three dimensions. An observer at rest relative to the fluid at infinity will se
a disturbance of the flow which vanishes at infinity. It would be natural to
compute compute the momentum of this motion by calculating the integral
∫

ρudV of the region exterior to the body. The problem is that such harmonic
flows have an expansion at infinity of the form

φ ∼ a ln r − A · rr−2 + O(r−2) (4.49)

in two dimensions and

φ ∼ a

R
−A ·RR−3 +O(R−3) (4.50)
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in three dimensions. Thus

ρ

∫

∇φdV =

∫

S

φndS, (4.51)

where S comprises both a surface in a neighborhood of infinity as well as the
body surface, is not absolutely convergent as the distant surfaces recedes. We
point out that a = 0 in two dimensions if the area of the body is fixed and there
is no circulation about the body. In three dimensions a vanishes if the body has
fixed volume, see problem 4.12.

But even if a = 0 and φ = O(R−1) the value of the integral is only condi-
tionally convergent will depend on how one defines the distant surface. So the
value attributed to the fluid momentum is ambiguous by this calculation.

An unambiguous result is however possible, if we instead focus on the kinetic
energy and from it determine the incremental momentum created by a change
in velocity. Let us fix the orientation of the body and consider its movement
through space, without rotation. This translation is completely determined by
a velocity vector U(t). The, from the discussion of section 2.6 we know that a
harmonic flow will satisfy the instantaneous boundary condition

∂φ

∂n
= U(t) · n (4.52)

on the surface of the body. Now ∇2φ = 0 is a linear equation, and so we see
that there must exist a vthe Φi as encoding the effect of the shape of the body
from all possible harmonic flows associated with translation of the body.

We may now compute the kinetic energy E of the fluid exterior to the body
using

u = Ui∇Φi. (4.53)

Thus

E(t) =
1

2
MijUiUj , Mij = ρ

∫

∇Φi · ∇ΦjdV. (4.54)

the integral being over the fluid domain. Clearly the matrix Mij is symmetric,
and thus

dE = MijUjdUi. (4.55)

On the other hand the change of kinetic energy, dE, must equal, in the absence
of external body forces, the work done by the force F which the body exerts on
the fluid, dE = F ·Udt. But according to Newton’s second law, the incremental
momentum dP is given by dP = Fdt. Consequently dE = U · dP. From (4.54)
we thus have

dE = ρMijdUjUi = dPiUi. (4.56)

Since this holds for arbitrary U we must have dPi = MijdUj . Integrating and
using the fact that Mij is independent of time and P = 0 when U = 0 we obtain

Pi = MijUj . (4.57)
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Thus we have reduced the problem of computing momentum, and then the
inertial force, to calculating Mij . Since Mij arises here as an effective mass
term associated with movement of the body, it is called the apparent mass
matrix.

But the calculation of Mij is not ambiguous since the integral for the kinetic
energy converges absolutely, and we can deduce Mij once the energy is written
in the form (4.54). We write

E =
ρ

2

∫

V

|u|2dV =
ρ

2

∫

V

(u −U) · (u + U)dV +
ρ

2

∫

V

|U|2dV. (4.58)

The reason for this splitting is to exhibit u −U, whose normal component will
vanish on the body by (4.52). Now u+U = ∇(φ+U ·x and u−U is solenoidal,
so u − U) · (u + U∇ ·

[

(φ + U · x)(u − U)
]

. Thus, remembering that |U|2 is
a constant, the application of the divergence theorem and use of (4.52) on the
inner boundary aallows us to reduce (4.58) to

E =
ρ

2

∫

So

(φ+ U · x)(u − U) · ndS + |U|2(V − Vb), (4.59)

where S0 is the outer boundary, Vis the volume contained by So, and V0 is the
volume of the body.

To compute the integral in (4.59) we need only the leading term of φ. Re-
ferring to (4.49),(4.50), we note that a = 0 for a finite rigid body (or even for a
flexible body of constant area/volume), see problem 4.11. Using

φ = −A · x
|x|N , u =

−A

|x|N +
NA · x x

|x|N+2
(4.60)

in (4.59) we have

E ∼ ρ

2

∫

So

[−A · x
|x|N + U · x

][ −A

|x|N +
NA · x x

|x|N+2
−U

]

· ndS. (4.61)

We are free to choose So to be a sphere of radius Ro. The term quadratic in A

in (4.61) is O(R1−2N
o )and so the contribution is of order R−N

o and will vanish
in the limit. The term under the integral quadratic in U yields −|U|2V, thus
canceling part of the last term in (4.59). Finally two of the cross terms in U,A
cancel out, the remaining term giving rthe contribution 2πρ(N −1)A ·U. Thus

E =
ρ

2

[

2πρ(N − 1)A · U − Vb|U|2
]

. (4.62)

Since φ = ΦiUi, we may write Ai(t) = ρ−1mijUj where mij is dependent on
body shape but not time. Then

E =
1

2

[

2π(N − 1)mij − Vbρδij
]

UiUj . (4.63)

Comparing (4.63) and (4.54) we obtain an expression for the apparent mass
matrix:

Mij = 2π(N − 1)mij − Vbρδij , N = 2, 3. (4.64)
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We thus can obtain the apparent mass of a body by a knowledge of the
expansion of φ in a neighborhood of infinity.

Given that we have computed a finite fluid momentum we are in a position
to state

Theorem 6 (D’Alembert’s paradox) In a steady flow of a perfect fluid in three
dimensions, and in steady flow in two dimensions for a body with zero circula-
tion, the force experienced by the body is zero.

Clearly if the flow is steady dP/dt = F = 0, and we are done. Of course
the proof hinges on the existence of a finite fluid momentum associated with a
single-value potential function.

Example 4.14: To find the apparent mass matrix of a elliptic cylinder in
two dimensions, we may use example 4.6. In the Z-plane the complex potential
for uniform flow −Q(cos θ, sin θ) past the cylinder of radius a > b is W (Z) =
−Qe−iθZ −Qeiθsa/Z. Since Z = 1

2 (z +
√
z2 − 4b2) we may expand at infinity

to get

w(z) ∼ −Qe−iθz −Q
[a2eiθ − b2e−iθ

z

]

+ . . . , (4.65)

so that
A =

[

U(a2 − b2), V (a2 + b2)
]

, (U, V ) = Q(cos θ, sin θ). (4.66)

Now the ellipse intersects the positive x-axis at its semi-major axis α = a2+b2

a
,

and the positive y-axis at its semi-minor axis β = a2−b2

a
. From (4.66) we obtain

the apparent mass matrix

M = 2πρ

(

a2 − b2 0
0 a2 + b2

)

− π
a4 − b4

a2

(

1 0
0 1

)

= πρ

(

β2 0
0 α2

)

. (4.67)

In particular for a circular cylinder the apparent mass is just the mass of of the
fluid displaced by the body.

An alternative expression for the apparent mass matrix in terms of an inte-
gral over the surface of the body rather than a distant surface is readily obtained
in terms of the potential Φi. We have

E =
ρ

2

∫

V

∇Φi · ∇ΦjUiUjdV =
ρ

2

∫

V

∇ · Φj∇Φi]dV UiUj . (4.68)

Applying the divergence theorem to the integral, surfaces So, sB , and observing
that Φi∇Φj = O(|x|1−2N), we see that the receding surface integral will give

zero contribution. Recalling that ∂φ
∂n

= U · n on the body surface, we see that
∂Φi

∂n
= ni where the normal is directed out of the body surface. In applying the

divergence theorem the normal at the body is into the body, with the result
that (4.54) applies with

Mij = −ρ
∫

Sb

ΦjnidS, n directed out of the body. (4.69)
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It follows from (4.57) that the fluid momentum is given by

P = −ρ
∫

Sb

φndS. (4.70)

We can verify the fact that (4.70) gives the fluid momentum by taking its
time derivative, using the result of problem 1.6:

d

dt

∫

Sb

φndS =

∫

Sb

∂φ

∂t
ndS +

∫

Sb

(u · n)∇φdS. (4.71)

Using the Bernoulli theorem for harmonic flow we have

d

dt

∫

Sb

φndS =

∫

Sb

[

− p

ρ
− 1

2
|u|2

]

n − (u · n)udS. (4.72)

Converting the terms on the right involving u to a volume integral, we observe
that the latter converges absolutely at infinity, as so we have, for the integration
over the domain exterior to Sb,

∫

V

[

u · ∇u− 1

2
∇|u|2

]

dV = −
∫

V

u × (∇× u)dV = 0. (4.73)

Therefore

− d

dt
ρ

∫

Sb

φndS =

∫

Sb

pndS = F, (4.74)

where F is the force applied by the body to the fluid.
Finally we note again that the inertial force required to accelerate a body

in a perfect fluid will contain a contribution from the actual mass of the body,
Mb. This mass appears as an additional term Mbδij in the expression (4.64)
for the apparent mass matrix. The total momentum of the body including its
apparent mass is thus Pi = MijUj +MbUi and Newton’s second law becomes

dPi
dt

= Fi, (4.75)

where F is the force applied to the body, to accelerate it and the surrounding
fluid.

4.3.2 Moment

We have so far restricted the motion of the body to translation, i.e. with no
rotation relative to the fluid at infinity. In general a moment is experienced
by a body in translational motion, so that in fact a free body will rotate and
thereby give the apparent mass matrix a dependence upon time. The theory
may be easily extended to include a time dependent apparent mass, due either
to rotation and/or deformation of he body, see section 4.4. But even in steady
translational motion of a body, a non-zero moment can result, see problem 4.14.
(There is no D’Alembert paradox for moment.)
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For example, in analogy with (4.69), the apparent angular momentum of the
fluid exterior to a body is defined by

PA = −ρ
∫

Sb

φ(x× n)dS, (4.76)

the normal being out of the body. It may be shown in a manner similar to that
used for linear momentum that

dPA

dt
= T, (4.77)

where T is the torque applied to the fluid by the body.

4.4 Deformable bodies and their locomotion

It might be thought that, in an ideal, or more suggestively, a “slippery” fluid, it
would be impossible for a body to locomote, i.e. to “swim” by using some kind
of mechanism involving changes of shape. The fact is, however, that inertial
forces alone can allow a certain kind of locomotion. The key point is that the
flow remains irrotational everywhere, and this will have the effect of disallowing
the possibility of the body producing an average force on the fluid which can
then accelerate the body. Rather, it is possible to locomote in the sense of
getting from point A to point B, put without any finite average acceleration. If
the body is assumed to deform periodically over some cycle of configurations,
then the kind of locomotion we envision is of a finite, periodic translation (and
possible rotation) of the body, repeated with each cycle of deformation.

We first note that the Newtonian relationships that we derived above for a
rigid body carry over to an arbitrary deformable body, which for simplicity we
take to have a fixed area/volume. This follows immediately from our verification
of dP

dt
= F from (4.70), since we made no assumption about the velocity of the

body surface.
Now the idea behind inertial swimming is to deform the body in a periodic

cycle which causes a net translation. To simplify the problem we consider only a
simple traslation of a suitable symmetric body along a line, e.g a body symmetric
about the z-axis, translating with velocity U(t)along this axis. In general we
cannot expect the velocity to remain of one sign, but over one cycle there will be
a positive translation, say to the right. Let Um(t) be the velocity of the center
of mass of the body, and let Uv(t) be the velocity of the center of volume of
the body. Also let PD be the momentum of deformation of the body relative
to its center of volume. If the total mass of the body is m, then Um(t)m is
the momentum of the body mass. Consider now the momentum of the fluid.
If the apparent mass of the body (now a scalar M(t)) is multiplied by Uv(t),
we get the fluid momentum associated with the instantaneous motion of the
shape of the body at time t. Finally, we have the momentum associated with
the motion of the boundary of the body relative to the center of volume. If
the potential of this harmonic flow of deformation is φD, then the deformation
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Figure 4.7: Swimming in an ideal fluid.

momentum is PD(t) = −ρ
∫

Sb
φDn · idS. The total momentum if body and fluid

is thus mUm(t)+M(t)Uv(t)+PD. If initially the fluid and body is at rest, then
this momentum, which is conserved, must vanish, and it is for this reason that
locomotion is possible.

Consider first a body of uniform density. so the center of mass and of volume
coincide. The Um = Uv = U and

U(t) =
PD(t)

m+M(t)
. (4.78)

There is no reason for the right-hand side o (4.78) to have non-zero time average,
and when it does not, we call this locomotion by squirming. To see squirming
in action it is best to treat an simple case, see example 4.15 below.

Alternatively, we can imagine that the center of mass changes relative to
the center of volume without and deformation. Then deformation occurs giving
a new shape, then the center of mass again changes relative to the center of
volume holding the boy fixed in the new shape. If the two shapes lead to
different apparent masses, locomotion occurs by recoil swimming, see example
4.16.

Example 4.15: We show in figure 4.7(a) a squirming body of a simplified
kind. The body consists of a thin vertical strip of length L1(t), and a horizontal
part of length L2(t). The length will change as a function of time, think of L2

as being extruded from the material of L1. We neglect the width w of the strips
except when computing mass and volume. The latter are constant, implying
L1 +L2 = L is constant. The density of the material is taken as ρb, so the total
mass is Mb = ρbwL and the total volume is wL.

A cycle begins with L1 = L, when L2 begins to grow to the right. If X(t)
denotes the position of the point P , then (ρbwL1+πρL2

1/4)dX
dt

is the momentum
of the fluid and vertical segment, where we have used the formula for apparent
mass of a flat plate in 2D. The velocity of the extruded strip varies linearly

from dX
dt

at P to
d(X+L2)

dt
at Q, so the momentum of the horizontal part is

ρbwL2d(X + 1
2
L2)/dt, where we neglect the apparent mass of the extruded

strip. The first half of the cycle stops when L1 = 0. Assuming the start is from
fluid and body at rest, the sum of these momenta remains zero throughout the
half-cycle:

(ρbwL+ πρL2
1/4)

dX

dt
+
ρbwL2

2

dL2

dt
= 0. (4.79)
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Figure 4.8: ∆X/L versus λ for the model squirmer of figure 4.7(a).

If we etL2 = Lt/T, L1 = L(1− t/T ) where T is the half-period of the cycle, then
we may obtain the change ∆X of X over the half-cycle by quadrature:

∆(X) =
1

λ
ln(1 + λ) − 1√

λ
tan−1(

√
λ), λ =

πρL

4ρbw
. (4.80)

We show this relation in figure 4.8 So we see that at the end of the half-cycle
the point P has moved a distance −∆X to the left. At this point, we imagine
another half-cycle in which L1 is created at the expense of L2, but at the point
Q. Observe that at the start of the second half-cycle Q is located a distance
L + ∆X from the initial position of P . It can be seen from considerations of
symmetry that the point Q will move to the left a distance −∆X in time T over
the second half-cycle. The the cycle is complete, L2 = L, and the midpoint can
be relabeled P . Thus the net advance to the right of the point P in time 2T
has been L + 2∆X, which from figure 4.8 always exceeds about .68L.

Example 4.16: Recoil swimming can be illustrated by the 2D model of
Figure (4.7)b. Let P denote the center of an elliptical surface of major,minor
semi-axes α, β. Within this body is a mass M on a bar enabling it to be driven
to the right or left. The weight of the shell and mechanism ism. Let the position
of the center be X(t) and the position of the mass be x(t). At the beginning
of the half-cycle the mass lies a distance β/2 to the right of P and the ellipse
has its major axis vertical. The mass the moves to the left a distance β. Since
momentunm is conserved, we have

(m+ ρπα2)
dX

dt
+M(

d(X + x)

dt
= 0. (4.81)
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Thus over a half-cycle (m+ ρπα2)∆X +M(∆X + ∆x) = 0 or, since ∆x = β,

∆X1 = − Mβ

m+M + ρπα2
. (4.82)

at this point the surface of the body deforms in a symmetric way, the points
(0,±α/2 moving down to (0,±β/2 and the points (±β/2, 0 moving our to
(±α/2, 0), so that the major and minor axes get interchanged. There is no
movement of P during this process. No the mass is moved back, a distance β
to the left. We see that in this second half-cycle the displacement is

∆X2 =
Mβ

m+M + ρπβ2
. (4.83)

The displacement over one cycle is then

∆X = ∆X1 + ∆X2 =
Mβ

m+M + ρπβ2
− Mβ

m+M + ρπα2
, (4.84)

which is positive since β < α.

Problem set 4

1. (a) Show that the complex potential w = Ueiαz determines a uniform
flow making an angle α with respect to the x-axis and having speed U .

(b) Describe the flow field whose complex potential is given by

w = Uzeiα +
Ua2e−iα

z
.

2. Recall the system (4.13) governing the motion of point vortices in two
dimensions. (a) Using these equations, show that two vortices of equal strengths
rotate on a circle with center at the midpoint of the line joining them, and find
the speed of their motion.

(b) Show that two vortices of strengths γ and −γ move together on straight
parallel lines perpendicular to the line joining them. Again find the speed of
their motion.

3. Using the method of Blasius, show that the moment of a body in 2D
potential flow, about the axis perpendicular to the plane (positive counter-
clockwise), is given by

M = −1

2
ρRe[

∫

C

z(dw/dz)2dz],

where Re denotes the real part and C is any simple closed curve about the body.
Using this, verify by the residue method that the moment on a circular cylinder



68 CHAPTER 4. POTENTIAL FLOW

with a point vortex of circulation Γ at its center, in uniform flow, experiences
zero moment.

4. Compute, using the Blasius formula, the force exerted by a point vortex
at the point c = beiθ, b > a upon a circular cylinder at the origin of radius a.
The complex potential of a point vortex at c is −Γi

2π
ln(z − c). (Use the circle

theorem and residues). Verify that the cylinder is pushed away from the vortex.

5. Prove Kelvin’s minimum energy theorem: In a simply-connected domain
V let u = ∇φ,∇2φ = 0, with ∂φ/∂n = f on the boundary S of V . (This u

is unique in a simply-connected domain). If v is any differentiable vector field
satisfying ∇ · v = 0 in V and v · n = f on S, then

∫

V

|v|2dV ≥
∫

V

|u|2dV.

(Hint: Let v = u + w , and apply the divergence theorem to the cross term.)

6. Establish (4.33) and work though he details of the proof of zero drag of
the Rankine fairing using the momentum integral method, as outlined in section
4.2.2.

7. In spherical polar coordinates (r, θ, ϕ) a Stokes stream function Ψ may
be defined by uR = 1

R2 sin θ
∂Ψ
∂θ
, uθ = −1

R sin θ
∂Ψ
∂R

.) Show that in spherical polar
coordinates, the stream function Ψ for a source of strength Q, placed at the
origin, normalized so that Ψ = 0 on θ = 0, is given by Ψ = Q

4π (1− cos θ). Verify
that the stream function in spherical polars for the airship model consisting
of equal source and sink of strength Q, the source at the origin and the sink
at R = 1, θ = 0, in a uniform stream with stream function 1

2UR
2(sin θ)2, is

given by (4.35). (Suggestion: The sink will involve the angle with respect to
R = 1, θ = 0. Use the law of cosines (c2 = a2 + b2 − 2ab cosθ for a triangle with
θ opposite side c) to express Ψ in terms of R, θ.)

8. In the Butler sphere theorem, we needed the following result: Show that

Ψ1(R, θ) ≡ R
a
Ψ(a

2

R
, θ) is the stream function of an irrotational, axisymmetric

flow in spherical polar cordinates, provided that Ψ(R, θ) is such a flow. (Hint:
Show that LRΨ1(R, θ) = LR1

Ψ(R1, θ), where R1 = a2/R. Here LR is defined
by (4.39).)

9. (Reading, Milne-Thomson sec. 13.52 on “stationary vortex filaments
in the presence of a circular cylinder” in 3rd edition.) Consider the following
model of flow past a circular cylinder of radius a with two eddies downstream of
the body. Consider two point vortices, of opposite strengths, the upper vortex
having clockwise circulation −Γ(i.e. Γ > 0) located at the point c = beiθ, thus
adding a term (iΓ/2π) ln(z − c) to the complex potential w, the other being
having circulation Γ at the point c̄ = be−iθ. Here b > a > 0.

Using the circle theorem, write down the complex potential for the entire flow
field, and determine by differentiation the complex velocity. Sketch the positions
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of the vortices and all vortex singularities within the cylinder, indicating their
strengths.

10. Continuing problem 9, verify that x = ±a, y = 0 remain stagnation
points of the flow. Show that the vortices will remain stationary behind the
cylinder (i.e. not move with the flow) provided that

U(1 − a2

c2
) =

iΓ

2π

(c2 − a2)(b2 − a2) + (c − c̄)2a2

(c − c̄)(c2 − a2)(b2 − a2)
.

Show (by dividing both sides of the last equation by their conjugates and sim-
plifying the result) that this relation implies b − a2/b = 2b sin θ, that is, the
distance between the exterior vortices is equal to the distance between a vortex
and its image vortex.

11. Show that the apparent mass matrix for a sphere is M0/2δij where M0

is the mass of fluid displaced by the sphere.

12. Show that for a body which may have a time-dependent shape but is of
fixed area/volume, the quantity a in (4.49),(4.50) must vanish.

13. Using the alternative definition (4.69), show that Mij is a symmetric
matrix.

14. Let the elliptic cylinder of examples 4.14 and 5.13 be place in a steady
uniform flow (U, V ). Show, using the result of problem 4.3, that the moment
experienced by the cylinder is −πρUV (α2−β2), α, β being the major and minor
semi-axes of the ellipse.


