
Chapter 4

Potential flow

Potential or irrotational flow theory is a cornerstone of fluid dynamics, for two
reasons. Historically, its importance grew from the developments made possible
by the theory of harmonic functions, and the many fluids problems thus made
accessible within the theory. But a second, more important point is that po-
tential flow is actually realized in nature, or at least approximated, in many
situations of practical importance. Water waves provide an example. Here fluid
initially at rest is set in motion by the passage of a wave. Kelvin’s theorem
insures that the resulting flow will be irrotational whenever the viscous stresses
are negligible. We shall see in a later chapter that viscous stresses cannot in gen-
eral be neglected near rigid boundaries. But often potential flow theory applies
away from boundaries, as in effects on distant points of the rapid movements of
a body through a fluid.

An example of potential flow in a barotropic fluid is provided by the theory
of sound. There the potential is not harmonic, but the irrotational property
is acquired by the smallness of the nonlinear term u · ∇u in the momentum
equation. The latter thus reduces to

∂u

∂t
+

1

ρ
∇p ≈ 0. (4.1)

Since sound produces very small changes of density, here we may take ρ to be will
approximated by the constant ambient density. Thus u = ∇φ with ∂φ

∂t
= −p/ρ.

4.1 Harmonic flows

In a potential flow we have
u = ∇φ. (4.2)

We also have the Bernoulli relation (for body force f = −ρ∇Φ)

φt +
1

2
(∇φ)2 +

∫

dp

ρ
+ Φ = 0. (4.3)
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Figure 4.1: A domain V , bounded by surfaces Si,o where ∂φ
∂n

is prescribed.

Finally, we have conservation of mass

ρt + ∇ · (ρ∇φ) = 0. (4.4)

The most extensive use of potential flow theory is to the case of constant density,
where ∇ · u = ∇2φ = 0. These harmonic flows can thus make use of the highly
developed mathematical theory of harmonic functions. in the problems we study
here we shall usually consider explicit examples where existence is not an issue.
On the other hand the question of uniqueness of harmonic flows is an important
issue we discuss now. A typical problem is shown in figure 4.1.

A harmonic function φ has prescribed normal derivatives on inner and outer
boundaries Si, So of an annular region V . The difference ud = ∇φd of two
solutions of this problem will have zero normal derivatives on these boundaries.
That the difference must in fact be zero throughout V can be established by
noting that

∇ · (φd∇φd) = (∇φd)
2 + φd∇2φd = (∇φd)

2. (4.5)

The left-hand side of (4.5) integrates to zero over V to zero by Gauss’ theo-
rem and the homogeneous boundary conditions of ∂φd

∂n
. Thus

∫

V
(∇φd)

2dV = 0,
implying ud = 0.

Implicit in this proof is the assumption that φd is a single-value function. A
function φ is single-valued in V if and only if

∮

C
dφ = 0 on any closed contour

C contained in V . In three dimensions this is insured by the fact that any such
contour may be shrunk to a point in V . In two dimensions, the same conclusion
applies to simply-connected domains. In non-simply connect domains uniqueness
of harmonic flows in 2DS is not assured. Note for a harmonic flow

∮

C

dφ =

∮

C

u · dx = ΓC , (4.6)

so that a potential which is not single valued is associated with a non-zero
circulation on some contour. Since there is no vorticity within the domain of
harmonicity, we must look outside of this domain to find the vorticity giving
rise to the circulation.
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Example 4.1: The point vortex of problem 1.2 is an example of a flow
harmonic in a non-simply connected domain which excludes the origin. If
u = 1

2π
(−y/r2, x/r2) then the potential is θ

2π
+ constant and the circulation

on an simply closed contour oriented counter-clockwise is 1. This defines the
point vortex of unit circulation. Here the vorticity is concentrated at the origin,
outside the domain of harmonicity.

Example 4.2 Steady two-dimensional flow harmonic flow with velocity
(U, 0) at infinity, past a circular cylinder of radius a centered at the origin,
is not unique. The flow of example 2.4 plus an arbitrary multiple of the point
vortex flowof example 4.1 will again yield a flow with the same velocity at in-
finity, and still tangent to the boundary r = a:

φ = Ux(1 + a2/r2) +
Γ

2π
θ. (4.7)

4.1.1 Two dimensions: complex variables

In two dimensions harmonic flows can be studied with the powerful apparatus of
complex variable theory. We define the complex potential as an analytic function
of the complex variable z = x+ iy:

w(z) = φ(x, y) + iψ(x, y). (4.8)

We will suppress t in our formulas in the case when the flow is unsteady. If we
identify φ with the potential of a harmonic flow, and ψ with the stream function
of the flow, then by our definitions of these quantities

(u, v) = (φx, φy) = (ψy,−ψx), (4.9)

yielding the Cauchy-Riemann equations φx = ψy, φy = −ψx. The derivative of
w gives the velocity components in the form

dw

dz
= w′(z) = u(x, y) − iv(x, y). (4.10)

Notice that the Cauchy-Riemann equations imply that ∇φ · ∇ψ = 0 at every
point where the partials are defined, implying that the streamlines are there
orthogonal to the lines of constant potential φ.

Example 4.3: The uniform flow at an angle α to the horizontal, with
velocity Q(cosα, sinα) is given by the complex potential w = Qze−iα.

Example 4.4: In complex notation the harmonic flow of example 4.2 may
be written

w = U(z + a2/z) +
iΓ

2π
log z (4.11)

where e.g. we take the principle branch of the logarithm function.

As a result of the identification of the complex potential with an analytic
function of a complex variable, the conformal map becomes a valuable tool in
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Figure 4.2: Flow onto a wedge of half-angle α.

the construction of potential flows. For this application we may start with the
physical of z-plane, where the complex potential w(z) is desired. A conformal
map z → Z transforms boundaries and boundary conditions and leads to a
problem which can be solved to obtain a complex potential W (Z). Under the
map values of ψ are preserved, so that streamlines map onto streamlines.

Example 4.5: The flow onto a wedge-shaped body (see figure 4.2). Consider
in the Z plane the complex potential of a uniform flow,−UZ, U > 0. The region
above upper surface of the wedge to the left, and the and the positive x-axis to
the right, is mapped onto the upper half-plane Y >) by the function Z = z

π

π−α .
Thus w(z) = −Uz π

π−α .

Example 4.6: The map z(Z) = Z+ b2

Z
maps the circle of radius a > b in the

Z-plane onto the ellipse of semi-major axis a2+b2

a
and semi-minor (y)-axis a2−b2

a

in the z-plane. And the exterior is mapped onto the exterior. Uniform flow
with velocity (U, 0)at infinity, past the circular cylinder |Z| = a, has complex
potential W (Z) = U(Z + a2/Z). Inverting the map and requiring that Z ≈ z
for large |z| gives Z = 1

2 (z +
√
z2 − 4b2). Then w(z) = W (Z(z)) is the complex

potential for uniform flow past the ellipse. Notice how the map satisfies dz
dZ

→ 1
as z → ∞ This insures that that infinity maps by the identity and so the uniform
flow imposed on the circular cylinder is also imposed on the ellipse.

4.1.2 The circle theorem

We now state a result which gives the mathematical realization of the physical
act of “placing a rigid body in an ideal fluid flow”, at least in the two-dimensional
case.

Theorem 3 Let a harmonic flow have complex potential f(z), analytic in the
domain |z| ≤ a. If a circular cylinder of radius a is place at the origin, then the

new complex potential is w(z) = f(z) + f
(

a2

z̄

)

.

To show this we need to establish that the analytical properties of the new
flow match those of the old, in particular that the analytic properties and the
singularities in the flow are unchanged. Then we need to verify that the surface
of the circle is a streamline. Taking the latter issue first, note that on the circle
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a2

z̄
= z, so that there we have w = f(z)+f(z), implying ψ = 0 and so the circle

is a streamline. Next, we note that the added term is an analytic function of z if
it is not singular at z. (If f(z) is analytic at z, so is f(z̄). As for the location of

singularities of w, since f is analytic in |z| ≤ a it follows that f
(

a2

z

)

is analytic

in |z| ≥ a, and the same is true of f
(

a2

z̄

)

. Thus the only singularities of w(z)

in |z| > a are those of f(z).

Example 4.7: If a cylinder of radius a is placed in a uniform flow, then
f = Uz and w = Uz + U(a2/z̄) = U(z + a2/z) as we already know. If a
cylinder is placed in the flow of a point source at b > a on the x-axis, then
f(z) = Q

2π
ln(z − b) and

w(z) =
Q

2π
(ln(z−b)+ln

(a2

z̄
− b

)

=
Q

2π
(ln(z−b)+ln(z−a2/b)−lnz)+C, (4.12)

where C is a constant. From this form it may be verified that the imaginary
part of w is constant when z = aeiθ. Note that the image system of the source,
with singularities within the circle, consists of a source of strength Q at the
image point a2/b, and a source of strength −Q at the origin.

Example 4.8: A point vortex at position zk of circulation Γk has the com-
plex potential wk(z) = −iΓk

2π
ln(z−zk). A collection of N such vortices will have

the potential w(z) =
∑N

k=1 wk(z). Since vorticity is a material scalar in two-
dimensional ideal flow, and the delta-function concentration may be regarded
as the limit of a small circular patch of constant vorticity, we expect that each
vortex must move with he harmonic flow created at the vortex by the other
N −1 vortices. Thus the positions zk(t) of the vortices under this law of motion
is governed by the system of N equations,

dzj

dt
=

−i
2π

N
∑

k=1,k 6=j

Γk

z − zk

. (4.13)

Note the conjugation on the left coming from the identity w′ = u− iv.

4.1.3 The theorem of Blasius

An important calculation in fluid dynamics is the force exerted by the fluid on
a rigid body. In two dimensions and in a steady harmonic flow this calculation
can be carried out elegantly using the complex potential.

Theorem 4 Let a steady uniform flow past a fixed two-dimensional body with
bounding contour C be a harmonic flow with velocity potential w(z). Then, if
no external body forces are present, the force (X, Y ) exerted by the fluid on the
body is given by

X − iY =
iρ

2

∮

C

(dw

dz

)2

dz. (4.14)
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Here the integral is taken round the contour in the counter-clockwise sense.
This formula, due to Blasius, reduces the force calculation to a complex contour
integral. Since the flow is harmonic, the path of integration may be distorted to
any simple closed contour encircling he body, enabling the method of residues
to be applied. The exact technique will depend upon whether are not the are
singularities in the flow exterior to the body.

To prove the result, first recall that dX − idY = p(−dy − idx) = −ipdz̄.
Also, Bernoulli’s theorem for steady ideal flow applies, so that

p = −ρ
2

∣

∣

∣

dw

dz

∣

∣

∣

2

+C, (4.15)

where clearly the constant C will play no role. Thus

X − iY =
iρ

2

∮

C

dw

dz

dw

dz
dz̄. (4.16)

However, the contour C is a streamline, so that dψ = 0 there, and so on C we

have dw
dz
dz̄ = dw̄ = dw = dw

dz
dz. using this in (4.16) we obtain (4.14).

Example 4.9: We have found in problem 2.1 that the force on a circular
cylinder in a uniform flow is zero. To verify this using Blasius’ theorem, we set

w = U
(

z + a2

z

)

so that U2
(

1− a2

z2

)

2 is to be integrated around C. Since there

is no term proprotional to z−1 in the Laurent expansion aboutn the origin, the
residue is zero and we get no contribution to the force integral.

Example 4.10: Consider a source of strength Q placed at (b, 0) and intro-
duce a circular cylinder of radius a < b into the flow. From example 4.6 we
have

dw

dz
=

1

z − b
+

1

z − a2/b
− 1

z
. (4.17)

Squaring, we get

1

(z − b)2
+

1

(z − a2/b)2
+

1

z2
+

2

(z − b)(z − a2/b)
− 2

z(z − a2/b)
− 2

z(z − b)
. (4.18)

The first three terms to not contibute to the integral around the circle |z| = a.
For the last three, the partial fraction decomposition is

A

z − b
+

B

z − a2/b
+
C

z
, (4.19)

where we compute A = 2a2

(b2−a2)b , B = 2b3

a2(a2−b2) , C = 2(a2+b2)
a2b

. The contributions

come from the poles within the circle and we have

X − iY =
iρ

2

Q2

4π2
2πi(B +C) =

Q2ρ

2π

a2

b(b2 − a2)
. (4.20)

The cylinder is therefore feels a force of attraction toward the source.
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This introduction to the use of complex variables in the analysis of two-
dimenisonal harmonic flows will provide the groundwork for a discussion of lift
and airfoil design, to be taken up in chapter 5.

4.2 Flows in three dimensions

We live in three dimensions, not two, and the “flow past body” problem in two
dimensions introduces a domain which is not simply connected, with important
consequences. The relation between two and three-dimensional flows is partic-
ularly significant in the generation of lift, as we shall see in chapter 5. In the
present section we treat topics in three dimensions which are direct extensions
of the two-dimensional results just given. They pertain to bodies, such as a
sphere, which move in an irrotational, harmonic flow.

4.2.1 The simple source

The source of strength Q in three dimensions satisfies

div u = Qδ(x), u = ∇φ. (4.21)

Here δ(x) = δ(x)δ(y)δ(z) is the three-dimensional delta function. It has the
following properties: (i) It vanishes if x 6= 0. (ii) Any integral of δ(x) over
an open region containing the origin yields unity. It is best to think of all
relations involving delta functions and other distributions as limits of relations
using smooth functions.

In our case, integrating ∇2φ = Qδ(x) over a sphere of radius R0 > 0 we get

∫

R=R0

∂φ

∂n
dS = Q. (4.22)

Since ∇2φ = 0,x 6= 0, and since the delta function must be regarded as an
isotropic distribution, having no exceptional direction, we make the guess (
using now ∇2φ = R−1d2(Rφ)/dR2) that φ = C/R,R2 = x2 + y2 + z2 for some
constant C. Then (4.22) shows that C = − Q

4π
. Thus the simple source in three

dimensions, of strength Q, has the potential

φ = − Q

4π

1

R
. (4.23)

Note that Q is equal to the volume of fluid per unit time crossing any deforma-
tion of a spherical surface, assuming the deformed surface surounds the origin.
1

1We indicate how to justify this calculation using a limit operation. Define the three-
dimensional delta function by limε→0 δε(R) where δε = 3

2πε3
1

1+(R/ε)3
. Solving ∇

2φε = δε =

R−2 d
dR

(

R2 dφε

dR

)

, under the condition that φε vanish at infinity, we obtain φε = −
1

4πR
+

∫

∞

R
R−2

[

tan−1(R3ε−3) − π/2
]

dR. For any positive R the integral tends to zero as ε → 0.
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Figure 4.3: The Rankine fairing. All lengths are in units of k.

4.2.2 The Rankine fairing

We consider now a simple source of strength Q placed at the origin in a uniform
flow W iz. The combined potential is then

φ = Uz − Q

4π

1

R
. (4.24)

The flow is clearly symmetric about the z-axis. In cylindrical polar coordinates
(z, r, θ), r2 = x2 + y2 we introduce again the Stokes stream function ψ:

uz = φz =
1

r

∂ψ

∂r
, ur = φr = −1

r

∂ψ

∂z
. (4.25)

Thus for (4.24) we have
1

r

∂ψ

∂r
= U +

Q

4π

z

R3
. (4.26)

Integrating,

ψ = Ur2/2 − Q

4π

( z

R
+ 1

)

. (4.27)

In (4.27) we have chosen the constant of integration to make ψ = 0 on the
negative z-axis.

We show the stream surface ψ = 0, as well as several stream surfaces ψ > 0,
in figure 4.3. This gives a good example of a uniform flow over a semi-infinite
body. An interesting question is whether or not such a body would experience
a force. We will find below that D’Alembert’s paradox applies to finite bodies
in three dimensions, that the drag force is zero, but it is not obvious that the
result applies to bodies which are not finite.

We will use this question to illustrate the use of conservation of momentum
to calculate force on a distant contour. In figure 4.4 the large sphere S of radius
R0 is centered at the origin and intersects the fairing on the at a circle bounding
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S

A

z

Figure 4.4: Geometry of the momentum integral for computation of the force
on the Rankine fairing.

the disc A. Let S′ be the spherical surface S minus hat part within the boundary
of A. We are considering steady harmonic flow and so the momentum equation
may be written

∂

∂xj

[ρui uj + p ] = 0. (4.28)

Let V ′ be the region bounded by S′ and the piece of fairing enclosed. Integrating
(4.28) over V ′ and using the divergence theorem., the contribution from the
surface of the fairing is the integral −np over this surface, where n is the outer
normal of the fairing. Thus this contribution is the force F experienced by the
enclosed piece of fairing, a force clearly directed along the z axis and therefore
equal to the drag, F = Diz . The remainder of the integral, taking only the
z-component, takes the form of an integral over S minus the contribution from
A. Thus conservation of momentum gives

D + ρ

∫

S

uzu ·R/R+
1

2

[

U2 − |u|2
] z

R
dS − IA = 0. (4.29)

We have here using the Bernoulli formula for the flow, p + 1
2
|u|2 = 1

2
U2, the

pressure at infinity being taken to be zero. Treating first the integral over S,
we have

u = U iz +
Q

4π

R

R3
, |u|2 = U2 +

UQ

2π

z

R3
+

Q2

16π2

1

R4
. (4.30)

Thus the integral in question becomes

∫

S

(

U +
Q

4π

z

R3

)(Uz

R
+
Q

4π

1

R2

)

− 1

4π

(

UQ
z2

R4
+

1

8π

Q2z

R5

)

dS. (4.31)

We see that this last integral gives UQ+ 1
2
UQ − 1

2
UQ = UQ. For the contri-

bution IA, we take the limit R0 → ∞ to obtain IA = U2πr2∞, where r∞ is the
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Figure 4.5: Flow around an airship.

asymptotic radius of the airing as z → ∞. In this limit D′ → D, the total drag
of the fairing. Thus the momentum integral method gives

D + UQ− U2πr2∞ = 0. (4.32)

But from (4.27) we see that the stream surface ψ = 0 is given by

z =
r2 − 1

2
k2

√
k2 − r2

, k2 =
Q

πU
. (4.33)

Thus r∞ = k, and (4.32) becomes

D + UQ− UQ = D = 0, (4.34)

so the drag of the fairing is zero.

Example 4.11: The flow considered now typifies the early attempts to
model the pressure distribution of an airship. The model consists of a source
of strength Q at position z = 0 on the z-axis, and a equalizing sink (source of
strength −Q) at the pint z = 1 on the z-axis. Since the source strengths cancel,
a finite body is so defined when the singularities are place in the uniform flow
U iz . It can be shown (see problem 4.7 below), that stream surfaces for the flow
are given by constant values of

Ψ =
U

2
R2 sin2 θ − Q

4π

(

cos θ+
1 − R cos θ√

R2 − 2R cos θ + 1

)

, (4.35)

where R, θ are spherical polars at the origin, with axial symmetry. We show the
stream surfaces in figure 4.4.
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4.2.3 The Butler sphere theorem.

The circle theorem for two-dimensional harmonic flows has a direct analog in
three dimensions.

Theorem 5 Consider an axisymmetric harmonic flow in spherical polars (R, θ, ϕ),
uϕ = 0, with Stokes stream function Ψ(R, θ) vanishing at the origin:

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ =

−1

R sin θ

∂Ψ

∂R
. (4.36)

If a rigid sphere of radius a is introduced into the flow at the origin, and if the
singularities of Ψ exceed a in distance from the origin, then the stream function
of the resulting flow is

Ψs = Ψ(R, θ) − R

a
Ψ(a2/R, θ). (4.37)

It is clear that Ψs vanishes when R = a, so the surface of the sphere is a
stream surface. Also the added term introduces no new singularities outside the
sphere. Thus the theorrm is proved if we can verify that R

a
Ψ(a2/R, θ) represents

a harmonic flow. In spherical polars with axial symmetry the only component
of vorticity is

ωϕ =
1

R

[∂(Ruθ)

∂R
− ∂uR

∂θ

]

. (4.38)

Thus the condition on Ψ for an irrotational flow is

R2∂
2Ψ

∂R2
+ sin θ

∂

∂θ

( 1

sin θ

∂Ψ

∂θ

)

≡ LRΨ = 0. (4.39)

If R
a
Ψ(a2/R, θ) is inserted into (4.39) we can show that the equation is satisfied

provided it is satisfied by Ψ(R, θ), see problem 4.8. Finally, since Ψ(R, θ) van-
ishes at the origin at least as R, RΨ(a2/R, θ is bounded at infinity and velocity
component must decay as O(R−2), so the uniform flow there is undisturbed.

Example 4.12: A sphere in a uniform flow U iz has Stokes stream function

Ψ(R, θ) =
U

2
R2 sin2 θ

[

1 − a3

R3

]

. (4.40)

This translates into the following potential:

φ = Uz
(

1 +
1

2

a3

R3

)

. (4.41)

Example 4.13: Consider a source of strength Q place on the z axis at z = b
and place a rigid sphere of radius a < b at the origin. The streamfunction for
this source which vanishes at the origin is

Ψ(R, θ) = − Q

4π
(cos θ1 + 1), (4.42)
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Figure 4.6: A a sphere of radius a in the presence of a source at z = b > a.

where θ1 is defined in figure 4.6.
Now from the law of cosines and figure 4.6 we have

R cos θ− b = R1 cos θ1, R2
1, R

2
1 = b2 − 2bR cos θ + R2. (4.43)

Thus

cos cos θ1 =
R cos θ − b√

b2 − 2bR cos θ +R2
. (4.44)

Thus the stream function including the sphere, Ψs, is given by

Ψs = − Q

4π

[ R cos θ− b√
b2 − 2bR cos θ + R2

+ 1
]

+
Q

4π

R

a

[ a2

R
cos θ − b

√

b2 − 2ba2

R
cos θ + a4

R2

+ 1
]

.

(4.45)

Now, again using the law of cosines,
√

b2 − 2ba2

R
cos θ + a4

R2 = bR2/R. Also we

may use R2 = R2
2 + 2a2

b
R cos θ − a4

b2 . Then Ψs may be brought into the form

Ψs = − Q

4π

[R cos θ − b

R1
+ 1

]

− a

b

Q

4π

[R cos θ − a2

b

R2

]

+
Q

4π

[R− R2

a

]

. (4.46)

The first term on the right is the source of strength Q at z = b. The second term
is another source, of strength a

b
Q, at the image point z = a2/b. The last term

can be understood as a line distribution of sinks of density Q
4πa

, extending from
the origin to the image point a2/b. Indeed, if a point P on this line segment
is associated with an angle θP , the the contribution from such a line of sinks
would be

Q

4πa

∫ a
2

b

0

cos θP dz. (4.47)

But dR = − cos θP dz, so the integral becomes

− Q

4πa

∫ R2

R

dR =
Q

4πa
(R− R2). (4.48)
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4.3 Apparent mass and the dynamics of a solid

body in a fluid

Although harmonic flow is an idealization never realized exactly in actual fluids
(except in some cases of super fluid dynamics), it is a good approximation in
many fluid problems, particularly when rapid changes occur. A good example is
the abrupt movement of a solid body through a fluid, for example a swimming
stroke of the hand. We know from experience that a abrupt movement of the
hand through water gives rise to a force opposing the movement. It is easy to see
why this must be, within the theory of harmonic flows. An abrupt movement of
the hand through still water causes the fluid to move relative to a observer fixed
with the still fluid at infinity. This observer would therefore compute at the
instant the hand is moving a finite kinetic energy of the fluid, whereas before
the movement began the kinetic energy was zero. To produce this kinetic energy
work must have been done, and so a force with a finite component opposite to
the direction of motion must have occurred. We are here dealing only with the
fluid, but if the body has mass the clearly a force is also needed to accelerate
that mass. Thus both the body mass and the fluid movement contribute to the
force experienced.

In a harmonic flow we shall show that, in the absence of external body
forces, the force on a rigid body is proportional to its acceleration, and further
the force contributed by the fluid can be expressed as an addition, apparent
mass of the body. In other words the augmented force due to the presence
of the surrounding fluid and the energy it acquires during motion of a body,
can be explained as an inertial force associated with additional mass and the
work done against that force. The term virtual mass is also used to denote this
apparent mass. For a sphere, which has an isotropic geometry with no preferred
direction, the apparent mass is just a scalar to be added to the physical mass.
In general, however, the apparent mass associated with translation of a body in
two or three dimensions will depend on the direction of the velocity vector. It
thus must be a second order tensor, represented by the apparent mass matrix.

4.3.1 The kinetic energy of a moving body

Consider an ideal fluid at rest and introduce a moving rigid body, in two or
three dimensions. An observer at rest relative to the fluid at infinity will se
a disturbance of the flow which vanishes at infinity. It would be natural to
compute compute the momentum of this motion by calculating the integral
∫

ρudV of the region exterior to the body. The problem is that such harmonic
flows have an expansion at infinity of the form

φ ∼ a ln r − A · rr−2 + O(r−2) (4.49)

in two dimensions and

φ ∼ a

R
−A ·RR−3 +O(R−3) (4.50)
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in three dimensions. Thus

ρ

∫

∇φdV =

∫

S

φndS, (4.51)

where S comprises both a surface in a neighborhood of infinity as well as the
body surface, is not absolutely convergent as the distant surfaces recedes. We
point out that a = 0 in two dimensions if the area of the body is fixed and there
is no circulation about the body. In three dimensions a vanishes if the body has
fixed volume, see problem 4.12.

But even if a = 0 and φ = O(R−1) the value of the integral is only condi-
tionally convergent will depend on how one defines the distant surface. So the
value attributed to the fluid momentum is ambiguous by this calculation.

An unambiguous result is however possible, if we instead focus on the kinetic
energy and from it determine the incremental momentum created by a change
in velocity. Let us fix the orientation of the body and consider its movement
through space, without rotation. This translation is completely determined by
a velocity vector U(t). The, from the discussion of section 2.6 we know that a
harmonic flow will satisfy the instantaneous boundary condition

∂φ

∂n
= U(t) · n (4.52)

on the surface of the body. Now ∇2φ = 0 is a linear equation, and so we see
that there must exist a vthe Φi as encoding the effect of the shape of the body
from all possible harmonic flows associated with translation of the body.

We may now compute the kinetic energy E of the fluid exterior to the body
using

u = Ui∇Φi. (4.53)

Thus

E(t) =
1

2
MijUiUj , Mij = ρ

∫

∇Φi · ∇ΦjdV. (4.54)

the integral being over the fluid domain. Clearly the matrix Mij is symmetric,
and thus

dE = MijUjdUi. (4.55)

On the other hand the change of kinetic energy, dE, must equal, in the absence
of external body forces, the work done by the force F which the body exerts on
the fluid, dE = F ·Udt. But according to Newton’s second law, the incremental
momentum dP is given by dP = Fdt. Consequently dE = U · dP. From (4.54)
we thus have

dE = ρMijdUjUi = dPiUi. (4.56)

Since this holds for arbitrary U we must have dPi = MijdUj . Integrating and
using the fact that Mij is independent of time and P = 0 when U = 0 we obtain

Pi = MijUj . (4.57)
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Thus we have reduced the problem of computing momentum, and then the
inertial force, to calculating Mij . Since Mij arises here as an effective mass
term associated with movement of the body, it is called the apparent mass
matrix.

But the calculation of Mij is not ambiguous since the integral for the kinetic
energy converges absolutely, and we can deduce Mij once the energy is written
in the form (4.54). We write

E =
ρ

2

∫

V

|u|2dV =
ρ

2

∫

V

(u −U) · (u + U)dV +
ρ

2

∫

V

|U|2dV. (4.58)

The reason for this splitting is to exhibit u −U, whose normal component will
vanish on the body by (4.52). Now u+U = ∇(φ+U ·x and u−U is solenoidal,
so u − U) · (u + U∇ ·

[

(φ + U · x)(u − U)
]

. Thus, remembering that |U|2 is
a constant, the application of the divergence theorem and use of (4.52) on the
inner boundary aallows us to reduce (4.58) to

E =
ρ

2

∫

So

(φ+ U · x)(u − U) · ndS + |U|2(V − Vb), (4.59)

where S0 is the outer boundary, Vis the volume contained by So, and V0 is the
volume of the body.

To compute the integral in (4.59) we need only the leading term of φ. Re-
ferring to (4.49),(4.50), we note that a = 0 for a finite rigid body (or even for a
flexible body of constant area/volume), see problem 4.11. Using

φ = −A · x
|x|N , u =

−A

|x|N +
NA · x x

|x|N+2
(4.60)

in (4.59) we have

E ∼ ρ

2

∫

So

[−A · x
|x|N + U · x

][ −A

|x|N +
NA · x x

|x|N+2
−U

]

· ndS. (4.61)

We are free to choose S0 to be a sphere of radius Ro. The term quadratic in A

in (4.61) is O(R1−2N
o )and so the contribution is of order R−N

o and will vanish
in the limit. The term under the integral quadratic in U yields −|U|2V, thus
canceling part of the last term in (4.59). Finally two of the cross terms in U,A
cancel out, the remaining term giving rthe contribution 2πρ(N −1)A ·U. Thus

E =
ρ

2

[

2πρ(N − 1)A · U − Vb|U|2
]

. (4.62)

Since φ = ΦiUi, we may write Ai(t) = ρ−1mijUj where mij is dependent on
body shape but not time. Then

E =
1

2

[

2π(N − 1)mij − Vbρδij
]

UiUj . (4.63)

Comparing (4.63) and (4.54) we obtain an expression for the apparent mass
matrix:

Mij = 2π(N − 1)mij − Vbρδij , N = 2, 3. (4.64)
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We thus can obtain the apparent mass of a body by a knowledge of the
expansion of φ in a neighborhood of infinity.

Given that we have computed a finite fluid momentum we are in a position
to state

Theorem 6 (D’Alembert’s paradox) In a steady flow of a perfect fluid in three
dimensions, and in steady flow in two dimensions for a body with zero circula-
tion, the force experienced by the body is zero.

Clearly if the flow is steady dP/dt = F = 0, and we are done. Of course
the proof hinges on the existence of a finite fluid momentum associated with a
single-value potential function.

Example 4.14: To find the apparent mass matrix of a elliptic cylinder in
two dimensions, we may use example 4.6. In the Z-plane the complex potential
for uniform flow −Q(cos θ, sin θ) past the cylinder of radius a > b is W (Z) =
−Qe−iθZ −Qeiθsa/Z. Since Z = 1

2 (z +
√
z2 − 4b2) we may expand at infinity

to get

w(z) ∼ −Qe−iθz −Q
[a2eiθ − b2e−iθ

z

]

+ . . . , (4.65)

so that
A =

[

U(a2 − b2), V (a2 + b2)
]

, (U, V ) = Q(cos θ, sin θ). (4.66)

Now the ellipse intersects the positive x-axis at its semi-major axis α = a2+b2

a
,

and the positive y-axis at its semi-minor axis β = a2−b2

a
. From (4.66) we obtain

the apparent mass matrix

M = 2πρ

(

a2 − b2 0
0 a2 + b2

)

− π
a4 − b4

a2

(

1 0
0 1

)

= πρ

(

β2 0
0 α2

)

. (4.67)

In particular for a circular cylinder the apparent mass is just the mass of of the
fluid displaced by the body.

An alternative expression for the apparent mass matrix in terms of an inte-
gral over the surface of the body rather than a distant surface is readily obtained
in terms of the potential Φi. We have

E =
ρ

2

∫

V

∇Φi · ∇ΦjUiUjdV =
ρ

2

∫

V

∇ · Φj∇Φi]dV UiUj . (4.68)

Applying the divergence theorem to the integral, surfaces So, sB , and observing
that Φi∇Φj = O(|x|1−2N), we see that the receding surface integral will give

zero contribution. Recalling that ∂φ
∂n

= U · n on the body surface, we see that
∂Φi

∂n
= ni where the normal is directed out of the body surface. In applying the

divergence theorem the normal at the body is into the body, with the result
that (4.54) applies with

Mij = −ρ
∫

Sb

ΦjnidS, n directed out of the body. (4.69)
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It follows from (4.57) that the fluid momentum is given by

P = −ρ
∫

Sb

φndS. (4.70)

We can verify the fact that (4.70) gives the fluid momentum by taking its
time derivative, using the result of problem 1.6:

d

dt

∫

Sb

φndS =

∫

Sb

∂φ

∂t
ndS +

∫

Sb

(u · n)∇φdS. (4.71)

Using the Bernoulli theorem for harmonic flow we have

d

dt

∫

Sb

φndS =

∫

Sb

[

− p

ρ
− 1

2
|u|2

]

n − (u · n)udS. (4.72)

Converting the terms on the right involving u to a volume integral, we observe
that the latter converges absolutely at infinity, as so we have, for the integration
over the domain exterior to Sb,

∫

V

[

u · ∇u− 1

2
∇|u|2

]

dV = −
∫

V

u × (∇× u)dV = 0. (4.73)

Therefore

− d

dt
ρ

∫

Sb

φndS =

∫

Sb

pndS = F, (4.74)

where F is the force applied by the body to the fluid.
Finally we note again that the inertial force required to accelerate a body

in a perfect fluid will contain a contribution from the actual mass of the body,
Mb. This mass appears as an additional term Mbδij in the expression (4.64)
for the apparent mass matrix. The total momentum of the body including its
apparent mass is thus Ii = MijUj +MbUi and Newton’s second law becomes

dIi
dt

= Fi, (4.75)

where F is the force applied to the body, to accelerate it and the surrounding
fluid.

4.3.2 Moment

We have so far restricted the motion of the body to translation, i.e. with no
rotation relative to the fluid at infinity. In general a moment is experienced
by a body in translational motion, so that in fact a free body will rotate and
thereby give the apparent mass matrix a dependence upon time. The theory
may be easily extended to include a time dependent apparent mass, due either
to rotation and/or deformation of he body, see section 4.4. But even in steady
translational motion of a body, a non-zero moment can result, see problem 4.14.
(There is no D’Alembert paradox for moment.)
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For example, in analogy with (4.69), the apparent angular momentum of the
fluid exterior to a body is defined by

PA = −ρ
∫

Sb

φ(x× n)dS, (4.76)

the normal being out of the body. It may be shown in a manner similar to that
used for linear momentum that

dPA

dt
= T, (4.77)

where T is the torque applied to the fluid by the body.

4.4 Deformable bodies and locomotion in an ideal

fluid

It might be thought that, in an ideal, or more suggestively, a “slippery” fluid, it
would be impossible for a body to locomote, i.e. to “swim” by using some kind
of mechanism involving changes of shape. The fact is, however, that inertial
forces alone can allow a certain kind of locomotion. The key point is that the
flow remains irrotational everywhere, and this will have the effect of disallowing
the possibility of the body producing an average force on the fluid which can
then accelerate the body. Rather, it is possible to locomote in the sense of
getting from point A to point B, put without any finite average acceleration. If
the body is assumed to deform periodically over some cycle of configurations,
then the kind of locomotion we envision is of a finite, periodic translation (and
possible rotation) of the body, repeated with each cycle of deformation.

We first note that the Newtonian relationships that we derived above for a
rigid body carry over to an arbitrary deformable body, which for simplicity we
take to have a fixed area/volume. This follows immediately from our verification
of dP

dt
= F from (4.70), since we made no assumption about the velocity of the

body surface.
Now the idea behind inertial swimming is to deform the body in a periodic

cycle which causes a net translation. To simplify the problem we consider only a
simple traslation of a suitable symmetric body along a line, e.g a body symmetric
about the z-axis, translating with velocity U(t)along this axis. In general we
cannot expect the velocity to remain of one sign, but over on cycle there will be
a positive translation, say to the right. Let Um(t) be the velocity of the center
of mass of the body, and let Uv(t) be the velocity of the center of volume of
the body. Also let PD be the momentum of deformation of the body relative
to its center of volume. If the total mass of the body is m, then Um(t)m is
the momentum of the body mass. Consider now the momentum of the fluid.
If the apparent mass of the body (now a scalar M(t)) is multiplied by Uv(t),
we get the fluid momentum associated with the instantaneous motion of the
shape of the body at time t. Finally, we have the momentum associated with
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P Q
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Figure 4.7: Swimming in an ideal fluid.

the motion of the boundary of the body relative to the center of volume. If
the potential of this harmonic flow of deformation is φD, then the deformation
momentum is PD(t) = −ρ

∫

Sb
φDn · idS. The total momentum if body and fluid

is thus mUm(t)+M(t)Uv(t)+PD. If initially the fluid and body is at rest, then
this momentum, which is conserved, must vanish, and it is for this reason that
locomotion is possible.

Consider first a body of uniform density. so the center of mass and of volume
coincide. The Um = Uv = U and

U(t) =
PD(t)

m+M(t)
. (4.78)

There is no reason for the right-hand side o (4.78) to have non-zero time average,
and when it does not, we call this locomotion by squirming. To see squirming
in action it is best to treat an simple case, see example 4.15 below.

Alternatively, we can imagine that the center of mass changes relative to
the center of volume without and deformation. Then deformation occurs giving
a new shape, then the center of mass again changes relative to the center of
volume holding the boy fixed in the new shape. If the two shapes lead to
different apparent masses, locomotion occurs by recoil swimming, see example
4.16.

Example 4.15: We show in figure 4.7(a) a squirming body of a simplified
kind. The body consists of a then vertical strip of length L1(t), and a horizontal
part of length L2(t). The length will change as a function of time, think of L2

as being extruded from the material of L1. We neglect the width w of the strips
except when computing mass and volume. The later are constant, implying
L1 +L2 = L is constant. The density of the material is taken as ρb, so the total
mass is Mb = ρbwL and the total volume is wL.

A cycle begins with L1 = L, when L2 begins to grow to the right. If X(t)
denotes the position of the point P , then (ρbwL1 +ρL2

1/4)dX
dt

is the momentum
of the fluid and vertical segment, where we have used the formula for apparent
mass of a flat plate in 2D. The velocity of the extruded strip varies linearly

from dX
dt

at P to d(X+L2)
dt

at Q, so the momentum of the horizontal part is
ρbwL2d(X + 1

2L2)/dt, where we neglect the apparent mass of the extruded
strip. The first half of the cycle stops when L1 = 0. Assuming the start is from
fluid and body at rest, the sum of these momenta remains zero throughout the
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Figure 4.8: ∆X/L versus λ for the model squirmer of figure 4.7(a).

half-cycle:

(ρbwL+ ρL2
1/4)

dX

dt
+
ρbwL2

2

dL2

dt
= 0. (4.79)

If we etL2 = Lt/T, L1 = L(1− t/T ) where T is the half-period of the cycle, then
we may obtain the change ∆X of X over the half-cycle by quadrature:

∆(X) =
1

λ
ln(1 + λ) − 1√

λ
tan−1(

√
λ), λ =

ρL

4ρbw
. (4.80)

We show this relation in figure 4.8 So we see that at the end of the half-cycle
the point P has moved a distance −∆X to the left. At this point, we imagine
another half-cycle in which L1 is created at the expense of L2, but at the point
Q. Observe that at the start of the second half-cycle Q is located a distance
L + ∆X from the initial position of P . It can be seen from considerations of
symmetry that the point Q will move to the left a distance −∆X in time T over
the second half-cycle. The the cycle is complete, L2 = L, abnd the midpoint
can be relabeled P . Thus the net advance to the right of the point P in time
2T has been L − 2∆x, which from figure 4.8 always exceeds about .68L.

Example 4.16: Recoil swimming can be illustrated by the 2D model of
Figure (4.7)b. Let P denote the center of an elliptical surface of major,minor
semi-axes α, β. Within this body is a mass M on a bar enabling it to be driven
to the right or left. The weight of the shell and mechanism ism. Let the position
of the center be X(t) and the position of the mass be x(t). At the beginning
of the half-cycle the mass lies a distance β/2 to the right of P and the ellipse
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has its major axis vertical. The mass the moves to the left a distance β. Since
momentunm is conserved, we have

(m+ ρπα2)
dX

dt
+M(

d(X + x)

dt
= 0. (4.81)

Thus over a half-cycle (m+ ρπα2)∆X +M(∆X + ∆x) = 0 or, since δx = β,

∆X1 = − Mβ

m+M + ρπα2)
. (4.82)

at this point the surface of the body deforms in a symmetric way, the points
(0,±α/2 moving down to (0,±β/2 and the points (±β/2, 0 moving our to
(±α/2, 0), so that the major and minor axes get interchanged. There is no
movement of P during this process. No the mass is moved back, a distance β
to the left. We see that in this second half-cycle the displacement is

∆X2 =
Mβ

m+M + ρπβ2)
. (4.83)

The displacement over one cycle is then

∆X = ∆X1 + ∆X2 =
Mβ

m+M + ρπβ2)
− Mβ

m+M + ρπα2)
, (4.84)

which is positive since β < α.

Problem set 4

1. (a) Show that the complex potential w = Ueiαz determines a uniform
flow making an angle α with respect to the x-axis and having speed U .

(b) Describe the flow field whose complex potential is given by

w = Uzeiα +
Ua2e−iα

z
.

2. Recall the system (4.13) governing the motion of point vortices in two
dimensions. (a) Using these equations, show that two vortices of equal strengths
rotate on a circle with center at the midpoint of the line joining them, and find
the speed of their motion.

(b) Show that two vortices of strengths γ and −γ move together on straight
parallel lines perpendicular to the line joining them. Again find the speed of
their motion.

3. Using the method of Blasius, show that the moment of a body in 2D
potential flow, about the axis perpendicular to the plane (positive counter-
clockwise), is given by

M = −1

2
ρRe[

∫

C

z(dw/dz)2dz],
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where Re denotes the real part and C is any simple closed curve about the body.
Using this, verify by the residue method that the moment on a circular cylinder
with a point vortex of circulation Γ at its center, in uniform flow, experiences
zero moment.

4. Compute, using the Blasius formula, the force exerted by a point vortex
at the point c = beiθ, b > a upon a circular cylinder at the origin of radius a.
The complex potential of a point vortex at c is −Γi

2π
ln(z − c). (Use the circle

theorem and residues). Verify that the cylinder is pushed away from the vortex.

5. Prove Kelvin’s minimum energy theorem: In a simply-connected domain
V let u = ∇φ,∇2φ = 0, with ∂φ/∂n = f on the boundary S of V . (This u

is unique in a simply-connected domain). If v is any differentiable vector field
satisfying ∇ · v = 0 in V and v · n = f on S, then

∫

V

|v|2dV ≥
∫

V

|u|2dV.

(Hint: Let v = u + w , and apply the divergence theorem to the cross term.)

6. Establish (4.33) and work though he details of the proof of zero drag of
the Rankine fairing using the momentum integral method, as outlined in section
4.2.2.

7. In spherical polar coordinates (r, θ, ϕ) a Stokes stream function Ψ may
be defined by uR = 1

R2 sin θ
∂Ψ
∂θ
, uθ = −1

R sin θ
∂Ψ
∂R

.) Show that in spherical polar
coordinates, the stream function Ψ for a source of strength Q, placed at the
origin, normalized so that Ψ = 0 on θ = 0, is given by Ψ = Q

4π
(1− cos θ). Verify

that the stream function in spherical polars for the airship model consisting
of equal source and sink of strength Q, the source at the origin and the sink
at R = 1, θ = 0, in a uniform stream with stream function 1

2UR
2(sin θ)2, is

given by (4.35). (Suggestion: The sink will involve the angle with respect to
R = 1, θ = 0. Use the law of cosines (c2 = a2 + b2 − 2ab cosθ for a triangle with
θ opposite side c) to express Ψ in terms of R, θ.)

8. In the Butler sphere theorem, we needed the following result: Show that

Ψ1(R, θ) ≡ R
a
Ψ(a2

R
, θ) is the stream function of an irrotational, axisymmetric

flow in spherical polar cordinates, provided that Ψ(R, θ) is such a flow. (Hint:
Show that LRΨ1(R, θ) = LR1

Ψ(R1, θ), where R1 = a2/R. Here LR is defined
by (4.39).)

9. (Reading, Milne-Thomson sec. 13.52 on “stationary vortex filaments
in the presence of a circular cylinder” in 3rd edition.) Consider the following
model of flow past a circular cylinder of radius a with two eddies downstream of
the body. Consider two point vortices, of opposite strengths, the upper vortex
having clockwise circulation −Γ(i.e. Γ > 0) located at the point c = beiθ, thus
adding a term (iΓ/2π) ln(z − c) to the complex potential w, the other being
having circulation Γ at the point c̄ = be−iθ. Here b > a > 0.
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Using the circle theorem, write down the complex potential for the entire flow
field, and determine by differentiation the complex velocity. Sketch the positions
of the vortices and all vortex singularities within the cylinder, indicating their
strengths.

10. Continuing problem 9, verify that x = ±a, y = 0 remain stagnation
points of the flow. Show that the vortices will remain stationary behind the
cylinder (i.e. not move with the flow) provided that

U(1 − a2

c2
) =

iΓ

2π

(c2 − a2)(b2 − a2) + (c − c̄)2a2

(c − c̄)(c2 − a2)(b2 − a2)
.

Show (by dividing both sides of the last equation by their conjugates and sim-
plifying the result) that this relation implies b − a2/b = 2b sin θ, that is, the
distance between the exterior vortices is equal to the distance between a vortex
and its image vortex.

11. Show that the apparent mass matrix for a sphere is M0/2δij where M0

is the mass of fluid displaced by the sphere.

12. Show that for a body which may have a time-dependent shape but is of
fixed area/volume, the quantity a in (4.49),(4.50) must vanish.

13. Using the alternative definition (4.69), show that Mij is a symmetric
matrix.

14. Let the elliptic cylinder of examples 4.14 and 5.13 be place in a steady
uniform flow (U, V ). Show, using the result of problem 4.3, that the moment
experienced by the cylinder is −πρUV (α2−β2), α, β being the major and minor
semi-axes of the ellipse.


