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1 Background

We will look at the problem of modeling queues. A typical problem is illus-
trated by a police roadblock on a one-lane highway. Cars arriuve at infrequent
intervals and are stopped, inspected or drivers questioned, then waived on. The
question is, how long a delay can be expected when you arrive at the roadblock.
Obviously the answer depends upon the rate of arrive of cars and the time the
police spend on inspecting each car. Depending on the circumstances, both the
arrival rate and the inspection times can fluctuate wildly. It is not at all clear
based say on the average times, just how long one is likely to have to wait.
Presumably the waiting time can also fluctuate considerably.

Another example is teller service at a bank. Most banks now have a single
line for multiple tellers, which must therefore be a better solution than letting a
queue form at each window. We should be able to model these cases and under-
stand the difference. The processing of transmissions along a communication
network presents similar problems.

In these notes we will look at the simplest example of a queuing model,
comprising a single server and a single line waiting to be served.

2 A deterministic flow model

Suppose that a line is served at a rate of µ customers per unit time, and cus-
tomers arrive at a rate of λ customers per unit time. We will allow these numbers
to be arbitrary real numbers (as in our population models), so we are thinking
of the “unit” of customers as being a large number. Suppose that initially no
one is in line, and customers begin arriving. At time t the number in the line is
therefore

n =
{

t(λ − µ), if λ > µ,
0, if µ > λ.

(1)
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Assume that if this number exceeds N , no one will join the line. The waiting
time of a customer in the queue when λ > µ is

T =
{

t(λ − µ)/µ, if t(λ − µ) < N ,
K/µ, if t(λ − µ) ≥ N . (2)

If there are M servers with a line for each, we may assume, since the number of
customers are large, that they will at any time make the lines of equal length
at each server, so that λ/M will be the arrival rate for each server. Assuming
that λ/M > µ we get a waiting time of

T =
{

t(λ/M − µ)/µ, if t(λ/M − µ) < N ,
N/µ, if t(λ/M − µ) ≥ N . (3)

If we have a single line for M servers, then the effective rate of service of the
line is Mµ. Also the customer will be willing to tolerate a longer line, of MN
customers. Thus in the two cases, above, we get t(λ−µM )/(µM ) and MN/µM
respectively, so the same waiting times result.

If µ > λ the single server flow model predicts zero waiting time. Also for
multiple lines or servers we have just seen that the model finds no distinction
between the two. Neither of these properties correctly reflects the true situa-
tion, due to the fact that the numbers involved in realistic queues are not that
large. Waiting for 6 people to be served at a bank can be time consuming and
frustrating. The flow model essentially says that either a line grows indefinitely
(assuming incoming customers always join it), or else it has zero length. In
practice we are willing to tolerate a short wait and the servers we a queuing for
would presumably be set up so that in a steady state the incoming customers
are served reasonably promptly but there can still be a short line. In other
words, in real life the situation is not one of queues of zero or infinite length.
It is the need to handle the “in-between” cases that forces us to abandon the
simple flow model.

Suppose that we try to track the individuals in this flow model. Let a
customer arrive at a server every 1

λ units of time. If µ > λ then the person
gets served in a time 1/µ < 1/λ and so the line is emptied before the next
customer arrives. If we count the customer being served as part of the line (we
always do this), then we can say that either 1 person or no persons are in the
line. This is clearly not what actually happens, even when the service is rapid.
The fluctuations in arrival times means that in general when you arrive you
can expect to find one or more customers already in line. There will also be
stretches of time when no customers have arrived, and so the servers are doing
nothing. In a sense the waiting times we experience even with adequate servers
are paying the price of the time when the servers were idle.

Also it must be admitted that it is wrong to assume that every customer
can be served in the same amount of time. There are fluctuations of this time,
which can either mean that the service is faster than 1/µ, so that the server
waits longer for the next customer, or else the service is longer and a line begins
to form.
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Clearly what is missing in the simple flow model are the fluctuations, both
in the arrival times and the service times. We cannot predicts these in a de-
terministic fashion. Thus the only possible model which allows us to predict
the properties of a queue is one which is stochastic. In a stochastic model the
formulation explicitly introduces the randomness of the phenomenon, and the
only predictions that are attempted are based upon probabilities.

3 The Poisson process

Before attempting to model a single server we consider the theory necessary to
talk about the fluctuations in times of arrival or service. Focusing on arrival
times, we can think of a server whose station is closed and suppose that the line
is simply building up. We are interested in computing pn(t) = the probability
of n customers arriving within the time interval 0, t. Of course there is no one
answer to this. It could well be that customers arrive at exactly one minute
intervals. What we are trying to model is the innumerable small causes that
make the arrival of customers completely unpredictable from one instant to the
next. The model we adopt here, the Poisson process, is based upon two essential
ideas. (1) If we divide time up into little intervals of length ∆t, then the arrival
times of customers in two distinct intervals are completely independent. There is
absolutely no influence of the events of one interval on the events within another.
(2) Within any such small interval, it is very unlikely that two customers arrive.
Many such intervals will have zero arrivals, but occasional we will have one
arrival. It then makes sense to speak of the probability of one arrival occuring
within any such interval.

Note that (1) does not have to be true. For example potential customers
may look at the line before deciding if they want to stop. Thus their arrival
time is affected by what has happened in a previous interval. Also (2) may not
be realistic in some situations. The server may be accessed by an elevator which
releases potential customers in bunches of ten or more, all of which arrive at
the same time.

But you must agree that the Poisson process is reasonable for a great many
situations where customers intent on being served are arriving at times deter-
mined only by their own actions, times which have nothing to do with the server
or line already present.

We formalize these ideas in the following assumptions:

(i) There is a positive real number λ such that the probability that an arrival
occurs between times t and t + ∆t is

λ∆t + o(∆t). (4)

(Here o(∆t denotes a quantity which, when divided by ∆t, forms a quotient
which tends to zero as ∆t tends to zero, i.e. it “vanishes faster than ∆t as
∆t → 0.)

(ii)The probability that more than one customer arrives in time ∆t is o(∆t).
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(iii) The number of arrivals in non-overlapping time intervals are statistically
independent, i.e. the probabilities associated with one are not dependent upon
the probabilities associated with the other. According to the theory of probabil-
ity, (iii) will allow us to compute the probability of two events occuring together
on two separate time intervals by multiplying the two separate probabilities, and
the probability of either occurring by summing the two probabilities.

Using these assumptions, we now want to show that

pn(t) =
1
n!

(λt)ne−λt. (5)

To prove (5), first note that the probability that no arrivals occured within any
time interval of width ∆t is 1 − λ∆t + o(∆t). We now want to use this fact
to compute the probability that no arrivals occur within the interval t, t + ∆t.
We consider the non-overlapping time intervals 0, t and t, t + ∆t. The events of
having no arrivals in these two intervals are independent by (iii) above, so the
probability of both happening is obtained by multiplying the two probabilities.
The probability that no arrivals occurred up to t is p0(t), while that of no one
arriving in the short interval is, as we have seen, 1−λ∆t up to a quantity o(∆t).
Thus

p0(t + ∆t) = p0(t)(1 − λ∆t) + o(∆t) (6)

Rearranging and dividing by ∆t we have

p0(t + ∆t) − p0(t)
∆t

= −λp0(t) +
o(∆t)
∆t

. (7)

Taking the limit ∆t → 0 we obtain

dp0

dt
= −λp0(t). (8)

Now clearly p0(0) = 1, so the solution is

p0(t) = e−λt. (9)

We have thus established (5) for n = 0.
Let’s consider the analogous computation of p1(t), the probability that 1

customer arrives in the interval 0, t. We want to compute p1(t + ∆t). This
quantity has an “either-or else” part, namely either one arrives in 0, t and none
in t, t + ∆t, or else none arrives in 0, t and one in t, t + ∆t. In this case we add
the probabilities of each event. Now examine the first of these, one in the long
interval, none in the short. The probability of both of these independent events
is the product p1(t)(1 − λ∆t) plus o(∆t). Similarly for the second we get the
product p0(t)λ∆t. Thus

p1(t + ∆t) = p1(t)(1 − λ∆t) + p0(t)λ∆t. (10)

Again arranging , dividing by ∆t, and taking the limit, we arrive at

dp1

dt
= −λp1 + λp0 = −λp1 + λe−λt. (11)
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Clearly p1(0) = 0. The solution may be obtained using an integrating factor:

deλtp1

dt
= −λ, (12)

so p1 = λte−λt + Ce−λt. The initial condition implies C = 0 and so

p1(t) = λte−λt. (13)

This establishes (5) for n = 1.
Now let’s proceed by induction. Assume pn = 1

n! (λt)ne−λt, we want to show
that pn+1 = 1

(n+1)!
(λt)n+1e−λt. Proceding as we did for n = 1, we see that

dpn+1

dt
= −λpn+1 + λpn. (14)

We easily get, using pn+1(0) = 0, pn+1 = 1
(n+1)!

(λt)n+1e−λt as required.

4 Some properties of the Poisson process

We show several of the pn(t) for the Poisson process in figure 1.

Figure 1. pn(t), n = 0, 1, 2, 3, for the Poisson process with λ = 1

How can we use these functions to describe the process of arrival of cus-
tomers? We first ask, what is the probability of one person being in the line at
time t, assuming that no one was in the line at time 0? We must add up some
possibilities. First, in the interval 0, ∆t the probability of one arrival was λ∆t.
So the first possibility is that the new arrival occurred in the first time interval.
The next possibility is that the first person arrived in the second time interval.
The probability that no one arrived in the first time interval is e−λ∆t and the
probability that one arrival occured in the second time interval is again λ∆t.
the product of these give the second possibility. Continuing in this way, we are
in effect computing the integral

∫ t

0

λe−λtdt = 1 − e−λt. (15)
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Let the waiting time for the first customer be T . We have just seen that the
probability of one person being in the line at time t is given by (15). This is the
same thing as the probability that one person arrived sometime in 0, t, or that
the waiting time for the first person did not exceed t.

Thus we can write

Prob[T ≤ t] = 1 − e−λt =
∫ t

0

λe−λtdt, (16)

Notice that in the last integral we have the function f = λe−λt. This function
has the property that

∫∞
0

f(t)dt = 1.
Definition: The function f(t) = λe−λt is called the distribution function of

waiting times.
We also remark that

Prob[T > t] = e−λt. (17)

Do you see why this is true?
We now ask, what is the expected waiting time for the first customer? Sup-

pose the first customer arrives in the interval t, t + ∆t. The probability of this
is p0(t)λ∆t. The contribution of this to the expected waiting time is t times
this probability, or tp0(t)λ∆t. Adding up all such intervals, we get the expected
waiting time as ∫ ∞

0

tλe−λtdt =
1
λ

. (18)

This gives us a satisfying and useful interpretation of the parameter λ. it has
the dimensions of an inverse time, and we have just found that this time is the
expected waiting time for the first customer in a line.

5 Simulation of a Poisson process

Consider the buildup of a line. At t = 0 no one is in line. At t = T1 a person
arrives. At t = T1 + T2 another person arrives, and so one. The T ′

i s are thus
waiting times from the arrival of one customer to the arrival of the next. The
quantities yi = 1 − e−λTi are the probabilities of these waiting times, with
0 ≤ yi ≤ 1. Suppose we look at the yi lying in some interval 0, a ≤ 1. Since a
is a probability of the waiting time being ≤ a, the fraction of yi in 0, a must be
proportional to a. In other words to simulate a Poisson process on a computer
all we need to do is choose random numbers which are uniformly distributed in
the interval 0, 1, From these points yi we compute the waiting times Ti from
yi = 1 − e−λTi

Here is the result of 50 tries with λ = 1/30:
• 7.8853
28.0064
19.9649
66.5746
43.0767
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18.2900
• 0.5603
51.6794
17.6476
28.6691
47.0974
76.4595
40.2061
•5.8172
15.6114
82.2186
74.6329
15.8427
67.2305
• 1.7890
13.0562
50.3261
• 0.2973
• 4.4860
• 6.7982
• 6.6464
27.7745
• 9.5314
• 6.6499
• 0.4618
41.2056
17.6688
80.5657
18.8205
16.2720
56.1672
22.3428
• 6.7937
33.4548
54.6267
• 0.5950
34.3030
14.3160
53.4773
20.9637
37.0816
16.8053
10.8988
• 6.3088
I have put a bullet next to all the waiting times ≤ 10. There are 14 oc-

curences in the 50 tries, giving the numerical estimate of Prob[T ≤ 10] to
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be 14/50=.28. The exact value for this probability in a Poisson process is
1− e−1/3 = .2835, so we can see that it doesn’t take many tries to se the theory
borne out.

6 The single server as a Poisson process

We now suppose that the service times also constitute a Poisson process. The
the probability that one customer is fully served in the time interval t, t + ∆t
is µ∆t. Let Pk(t) = probability that there are k people in the line at time
t. The equation satisfied by Pk is a bit complicated but its pieces are easy to
understand. Here it is:

Pk(t + ∆t) = Pk(t)(1 − λ∆t)(1 − µ∆t) + Pk(t)(λ∆t)(µ∆t)

+Pk+1(t)(µ∆t)(1 − λ∆t) + Pk−1(1 − µ∆t)(λ∆t). (19)

The first term on the right gives the probability that k customers were in the
line at time T and that no one either arrived or was served in the interval ∆t.
The next term is the probability that there were k in the line at time t and that
one person arrived and one was served in the time interval ∆t. The remaining
terms can be similarly described. These are “either-or” probabilities so they
must be added.

Now if we neglect terms which are o(∆t) in (19) things get simpler:

Pk(t + ∆) = Pk[1 − (λ + µ)∆t] + Pk+1µ∆t + Pk−1λ∆t. (20)

Rearranging and taking the limit ∆t → 0 we have

dPk

dt
= −(λ + µ)Pk + µPk+1 + λPk−1. (21)

These eequations hold for k = 1, 2, . . .. When computing the equation for P0 we
have to be careful. nThye only possibilities are that either there was no one in
line at time t and no one arrived in the following interval ∆t, or else one person
was in the line an was served. This leads to

dP0

dt
= −λP0 + P1µ. (22)

6.1 The steady-state queue

Let us assume that we have a steady state where the probabilities are all inde-
pendent of time. Then from (22) we have P1 = (λ/µ)P0. For this steady state
(21) yields the second-order difference equation

µPk+1 − (λ + µ)Pk + λPk−1 = 0. (23)

We see that a solution of (23) is given by

Pk = Cρk, ρ = λ/µ < 1. (24)
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(There is in fact another solution, namely Pk = C′ = another constant,
which must be disregarded because all of the P ′

ks must sum to 1, see below.)
Note that we are assuming that expected service time is less that the expected
waiting time. This is the only situation where we can expect there to exist a
steady state. Otherwise the line just keeps growing.

From P1 = (λ/µ)P0 we see that C = P0 in (24). Now since the probability
of some number ≥ 0 of persons being in the line is 1, we have

∞∑

0

Pk = 1 =
∞∑

0

P0ρ
k, (25)

yielding by summation of the geometric series,

P0 = 1− ρ. (26)

Thus we have our probabilities in terms of λ, µ:

Pk = ρk(1 − ρ). (27)

6.2 Some properties of the queue

What is the expected length of the queue? This is given by

L =
∞∑

0

kPk =
∞∑

0

kρk(1 − ρ). (28)

To sum this, note that

d

dρ

∞∑

0

ρk =
∞∑

1

kρk−1 =
d

dρ

1
1 − ρ

=
1

(1 − ρ)2
. (29)

Thus
L =

ρ

(1 − ρ)2
(1 − ρ) =

ρ

1 − ρ
=

λ

µ − λ
. (30)

Problem: Suppose we want the expected number of customers in the line
actually waiting to be served. Since k in the system means that k−1 are actually
waiting to be served, show that this is given by

∞∑

1

(k − 1)Pk =
ρ2

1 − ρ
. (31)

Since we are dealing with a steady state, and the expected number of people
in the queue is λ

µ−λ
, while waiting in line we will see an average of λT new

customers arrive, where T is the average waiting time in the line. Since we are
in a steady state we must have λ

µ−λ = λT , so that

T =
1

µ − λ
. (32)
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An example: A bank teller finds that the probability of serving a customer
within a 1 minute time interval is 1/6. If time is measure in hours, ∆t = 1/60,
so µ = 10. The probability of a new customer arriving in the interval t, t+ one
minute is observed to be 1/12, so λ = 5. Thus the average waiting time in the
line is 1/5 or 12 minutes.

10


