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1 Background

Alan Turing (1912-1954) has been described as the founder of computer science.
He was a mathematician whose ideas about computability ushered in the com-
puter age. (For some background, go to http://www.turing.org.uk/turing/.)
Turing was also a master modeler. The Turing machine provides the basic unit
of electronic computation, a modular “computer” from which all computing
machines can in effect be assembled.

Toward the premature end of his life, Turing turned his attention to biology.
He was fascinated by the complexity of early development, wherein aggregates
of seemingly identical cells begin to differentiate and sort themselves into ar-
rangements of tissue that will eventually make up the living organism. He asked
a very precise question about how this process could begin, and then provided
a model in which this question could be answered. In the course of this work he
made one of the first uses of an electronic computer to solve differential equa-
tions. In the present case study we shall look at Turing’s model; the topics we
have already studied provide an introduction to the methods used by Turing in
his study.

We shall describe the model as one of chemical morphogenesis. The “chem-
ical” is appropriate because Turing recognized that living cells could be viewed
as biochemical “factories”, synthesizing proteins and regulating their use. (Tur-
ing developed his ideas about the same time that Watson and Crick were con-
structing their model of DNA, although I do not know if he was aware of their
work). “Morphogenesis” is appropriate as a term to describe the emergence
of structure and form through the process of biological development. We shall
therefore study the mathematics of chemical reactions and the manner in which
these reactions can interact cooperatively in aggregates of living cells.

Turing’s ideas were not immediately accepted by biologists, since the model
was based on a number of hypothesis that had not been tested in the laboratory.
It is only in recent years that it has been found that some aspects of Turing’s
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model describe reasonable well some of the experimental results in developmen-
tal biology. We shall not go into the associated biological studies in any detail,
but instead focus on the mathematical content of Turing’s original model and
what he was trying to accomplish with it.

Our study is organized as follows: we first summarize what Turing set out to
do, then give some background on the use of differential equations to represent
chemical reactions, and the mathematical description of diffusion between cells.
Finally, we introduce and study Turing’s model in the case of “one-dimensional
tissue”, which is a line or ring of cells where morphogenesis takes place.

2 Summary of Turing’s ideas

Turing postulated that a living cell could be described by vector (surely a vector
of very large dimension) x(t) whose components are concentrations of biochem-
icals. During the process of development, he argued that the manner in which
these biochemcials interact must involve not just autonomous, isolated cells,
but rather some sort of intercellular communication. He reasoned that the most
likely candidate was diffusion, because he was interested in the stage of devel-
opment well before the appearance of a nervous system and wave-like neural
communication.

Early development of, say, an amphibian such as a frog is initiated by fertil-
ization of the egg and a sequence of cell divisions leading to an aggregate of cells
called the blastula. At some point the blastula acquires an axis of symmetry
and one speaks at that time of the animal and vegetal poles. So it appears
that early on the cells of the blastula cease to be identical but acquire differing
characteristics which will ultimately lead to different fates in the developed or-
ganism. Some will become part of the ectoderm, some will become liver cells,
some heart cells, etc. This process of differentiation of a group of cells, became
the focus of Turings’s interest. Turing reasoned that in the eariest stages of cell
division, essentially identical sub-units were being created. But eventually this
homogeneous state is broken and differentiated cells, or patterns of differentia-
tion, are observed. A frog acquires a heart and a leopard its spots. It was this
was the puzzle of the emergence of pattern from homogeneity that intrigued
him and led to his model.

Turing first introduced the idea of an isolated cell. (I will not follow exactly
Turing’s terminology but will try to be faithful to his ideas.) An isolated cell is
described by a vector x(t), which is assumed to satisfy an ODE of the form

dx
dt

= F(x). (1)

Note that this is a vector ODE, a system of N equations for the N chemical
components that define the state of a cell. The system is the saem for every cell.
The idea is that before the cells of tissue are allowed to interact (communicate),
they are regarded as identical objects. By identical, we mean not only that
F is the same for all cells, but that also the solution of (1) that results is the
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essentially the same for every cell. That is, the phase space of the solution
x(t), of (1) must look the same for every cell. We call this solution the resting
state. Suppose, for example, that the resting state of all cells is the same
unique equilibrium point xe, so that F(xe) = 0. Then, when the cell is in the
resting state, all the chemical concentrations are a constant values given by the
components of xe. In order for the isolated cell to stay in this resting state, it
must be possible to perturb x slightly from its resting state and be sure that
again x→ 0 as t→∞. You will recognize that what we are saying here is that
the resting state xe should be stable, So this is what Turing postulated, that
isolated cells are identical and are always found in stable resting states.

We remark that it is not necessary that the resting state be a equilibrium
point xe where F(x) = 0. For example, the resting state could well be a stable
periodic cycle, described by a closed loop in phase space and with some fixed
period T , so that in the resting state x(t + T ) = x(t) for all t. The cycle would
then have to be stable in that the cell eventually returns to the same cycle after
it is perturbed (i.e. x(t) changed by a small amount at some point in the cycle).

Next, Turing allows cells to “communicate” via diffusion of the chemical
of x, in a manner we shall formulate below. The question he then asks is, is
the“tissue”, i.e. the group of cells communicating via diffusion, still going to
remain in the homogeneous resting state? That is, will the cells individually stay
in their resting states even though they can communicate via diffusion? Turing’s
hunch was that, depending upon the chemical reactions and the nature of the
diffusion, it could well be that the tissue was unstable to pattern formation even
though the isolated cells were stable at the resting state. We use the term
pattern here to mean that chemical concentrations vary from cell to cell, not
that the Fs are different.

Thus Turing set out to show that he could find a set of reactions between N
chemicals such that the isolated cells have stable rest states, but that a diffusive
instability occurs in the tissue aggregate of diffusively communicating cells. This
was found to be possible, and this is what we would like do demonstrate in this
case study.

3 The chemical ODEs

Suppose that a chemical A reacts with a chemical B to form a compound C.
The reaction occurs when molecules of A at a certain concentration react with
molecules of B at their concentration. The reaction is usually written A +
B → C. These reactions proceed by pairwise interaction of molecules, and it is
observed that the rate of formation of C is proportional to the product of the
concentrations of A and B in grams per mole or in numbers of molecules per
volume of solute. A rate constant is then added to the symbol of the reaction
to indicate the constant of proportionality. Thus we have

A + B→
k

C. (2)
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The mathematical description is given by several ODEs. The first is

dC

dt
= kAB. (3)

This says that the concentration of C obeys the law just described, called the
law of mass action. There are two further equations which describe how A and
B behave. These are

dA

dt
= −kAB,

dB

dt
= −kAB. (4)

In essence these three equations say that when M molecules of A combine with
M molecules of B to produce M molecules of C, we take away M units for A
and B and add M units of C, all a t a rate proportional to the instantaneous
concentrations of A and B.

It is of interest to know that we can solve these equations to determine
mathematically the course of the reaction. Note that

d(A + C)
dt

=
d(B + C)

dt
= 0. (5)

Thus if A0, B0, C0 denote the concentrations at t = 0, we set C0 = 0 (since C
is to be made by the reaction) and have

A + C = A0, B + C = B0. (6)

Using these last expressions in (3), we have the following ODE problem for C:

dC

dt
= k[A0 − C][B0 −C], C(0) = 0. (7)

Since A and B are being used in equal amounts, the reaction will end when
the smaller of A0, B0 gets used up. Note that if we set u = C − B0 then
the problem becomes du/dt = ku(u0 − u), u0 = A0 − B0, which is a logistic
differential equation, which we know how to solve with the initial condition
u(0) = −B0.

We give another example of chemical ODEs, consider the reactions

E + S

k+1→
←
k−1

C
k+2→E + P. (8)

These reactions describe an enzyme E which acts as a catalyst for a reaction
which yields a product P . An intermediary in this reaction is the complex C.
The various rates are indicated. Here are the associated ODEs:

dE

dt
= −k+1ES + k−1C + k+2C,

dS

dt
= −k+1ES + k−1C, (9)

dC

dt
= k+1ES − k−1C − k+2C,

ds

dt
= −k+1ES + k−1C,

dP

dt
= k+2C. (10)
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The point here is to see how biochemical reactions can give rise to nonlinear
equations analogous to those we have seen in other contexts, e.g. population
biology. The fact that quadratic nonlinearities have appeared here is due to
the fact that reactions tend to be bimolecular with overwhelming probability.
There are however various feedback mechanisms which can give rise to more
complex nonlinearities, and it makes sense to consider the possibility that we
have essentially arbitrary nonlinearities possible in Turing’s model, although
of course the importance of the model would rest on its being realizable in a
biochemical context.

4 Analysis of the stability of the resting state

We shall consider Turing’s model for N = 2, that is for two chemicals. x =
(x1, x2), the resting state being assumed to be a unique equilibrium point xe.
The linearized problem near x leads to the following equation for the perturba-
tions δx1(t), δx2(t):

dδx1

dt
= a11δx1 + a12δx2,

dδx2

dt
= a21δx1 + a22δx2. (11)

Here

A =
(

a11 a12

a21 a22

)
=

( ∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

) ∣∣∣
x=xe

. (12)

The eigenvalue equation, assuming the perturbations are proportional to eλt, is

Det(A − λI) = 0 = λ2 − Tλ + D, T = a11 + a22, D = a11a22 − a12a21. (13)

Thus
λ

1
2
(T ±

√
T 2 − 4D). (14)

We must have the real parts of both roots negative for stability of the resting
state. This is clearly not possible if D < 0. If D > 0 it is still necessary that
T < 0 and the two conditions D > 0, T < 0 are sufficient for stability. Thus we
must have

a11 + a22 < 0, a11a22 − a12a21 > 0. (15)

What Turing asks in the present example is then the following question. Let
the state of a cell be determined by the concentrations of the two chemicals
x1(t), x2(t). Let the reactions and the unique resting state be such that the
conditions (15) are satisfied. Then, if we allow the cells to “communicate”, will
the resulting tissue remain stable, in the sense that all cells remain in their
original resting states?

5 Cell-cell communication by diffusion

We represent a cell as a small cube of side ∆, with the chemical2 x1, x2 dis-
tributed homogeneously within. If two cells are adjacent and in contact, known
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biological processes can allow chemicals to pass from one cell to the other. Tur-
ing assumed that this occured according to Fick’s law. Fick’s law states that
the flux of chemical from one cell to the other is proportional to the difference
of the chemical concentrations in the two cells, the flow being from the higher
to the lower concentration.

We now want to consider a line of cells labeled by the index i. Thus x(i) will
be the state of the ith cell. Then the flux of x1 into the ith cell well be

f1 = K1∆2(x(i−1)
1 −x

(i)
1 )+K1∆2(x(i+1)

1 −x
(i)
1 ) = K1∆2(x(i−1)

1 −2x
(i)
1 +x

(i+1)
1 ).

(16)
Similarly, the second chemical, which will in general diffuse at a different rate,
will have flux f2 into the ith cell, where

f2 = K2∆2(x(i−1)
2 − 2x

(i)
2 + x

(i+1)
2 ), (17)

see the figure below. Note that we have included the area ∆2 of the face across
which transport is taking place in the definition of the constants of propor-
tionality K1, K2 > 0. Thus µ1 would represent the number of molecules per
second crossing the cell interface, per unit of area, and per unit of concentration
difference between the two cells.

If we now include cell-cell communication, we see that the states of all of the
cells is determined by the following system of equations,

dx(i)

dt
= F (x(i)) + M · (x(i−1) − 2x(i) + x(i+1)), i = 1, 2, . . .Ncells, (18)

where

M =
(

∆2K1 0
0 ∆2K2

)
. (19)

Since we are considering Ncells in a row, it is convenient to arrange them
in a circle, so that cell i = −1 and cell i = Ncells are equivalent, as are cells
i = Ncells + 1 and i = 1. Then (18) is a closed system of Ncells equations for
the same number of knowns x(i). It is important to note that the homogeneous
resting state x(i) = xe is an exact solution of this system, because all of the
fluxes vanish in this state.

Turing studied this system on a primitive computer for various definitions
of F based upon chemical reactions satisfying (15) (in the case N=2). As we
have explained, the purpose was so see if the homogeneous resting state was
still stable in the presence of diffusive communication between cells.
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We want to use analysis to study Turing’s question, and so will replace the
discrete cell system by a continuous one, in which the index i is related to a
position s in the ring by s = ∆i. The flux into the cell labeled x is then

f(s) = M · (x(s −∆)− 2x(s) + x(s + ∆) ≈M · ∆
2

2
d2x
ds2

(s). (20)

Here we have expanded each term in its Taylor series through terms in ∆2, e.g.

x(s + ∆) = x(s) +
dx
ds

(s)∆ +
d2x
ds2

(s)∆2/2 + . . . . (21)

In assuming ∆ small and carrying out this expansion, we are effectively
passing to the limit ∆ → 0, with simultaneously Ncells → ∞, in such a way
that Ncells∆ → L, L being the circumference of the ring. (We also see below
that Kj∆4 should tend to a finite limit.)

Thus we want to examine the linear stability of the continuous PDE

∂x
∂t

(t, s) = F (x(t, s)) + M · ∂
2x

∂2s
(s, t), (22)

where

M =
(

µ1 0
0 µ2

)
, µj = Kj∆4/2, j = 1, 2. (23)

The linearization is to be about the homogeneous rest state of the cells. The
diffusion coefficients µ1, µ2 are assumed finite and positive.

6 Analysis of the linearized system

In order to linearize (23), only need to linearize F (x). If we do that, and drop
the δ from δx, we get the system

∂x
∂t

= A · x + M · ∂
2x

∂s2
, (24)

where

A =
(

a11 a12

a21 A22

)
(25)

is a matrix satisfying (15). We will follow Turing in considering only pattern
waves, i.e solutions of (24) of the form

x = eσt+iksx0, (26)

where x0 is a constant vector. If, for some µ1, µ2, k there exist solutions of this
form such that the real part of σ is positive, then the tissue is unstable to pattern
waves even though the isolated cells are stable. When this occurs it is called a
diffusive instability. In essence what Turing was after was to demonstrate the
existence of diffusive instabilities.
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Since ∂2

∂s2 eiks = −k2eiks, and ∂
∂t

eσt = σeσt, we see that the pattern wave
solutions are determined by a nontrivial solution of the equation B · x0 = 0
where

B = A −
(

µ1k
2 + σ 0
0 µ2k

2 + σ

)
. (27)

For a nontrivial solution the determinant must vanish:

Det

(
µ1k

2 + σ − a11 −a12

−a21 µ2k
2 + σ − a22

)
. (28)

We can rewrite this determinant in the following form:

σ2 − T̄ σ + D̄ = 0, (29)

where
T̄ = a11 + a22 − k2(µ1 + µ2) = T − k2(µ1 + µ2), (30)

D̄ = a11a22 − a12a21 − µ1k
2a22 − µ2k

2a11 + µ1µ2k
4

= D − µ1k
2a22 − µ2k

2a11 + µ1µ2k
4. (31)

Now comes a straightforward but slightly tricky argument which will tell us
when a diffusive instability can be possible. We have a quadratic for σ, just
as we had a quadratic for λ in the study of stability of the isolated cell. By
that earlier argument, the necessary and sufficient condition for an instability is
that, now referring to the present problem, that T̄ < 0 and D̄ > 0. Given that
T < 0 by assumption, and that µ1, µ2 > 0, we see that T̄ < 0 Hence we only
need to show that with diffusion we can make D < 0. But this clearly requires
that at one of the numbers a11, a22 be positive. Since T < 0 the other of this
pair must be negative. But since a11a22 > a12a21, it follows that a12a22 < 0.

It follows that necessary conditions for a diffusive instability are the both
a11a22 and a12a22 be negative.

We now examine when, given that these necessary conditions are satisfied,
a diffusive instability actually occurs. Now D > 0, and we may suppose that
a11 < 0. So that we can deal with positive numbers we set ā11 = −a11 > 0.
Then we see that to make D̄ negative we must have

a22µ1 − ā11µ2 > 0. (32)

This is the basic inequality behind the existence of a diffusive instability, and it
is worth some discussion. Since we are dealing with the case a11 < 0, we note
that the entry b11 in the matrix B given by (27) is negative, indicating that
the chemical x1 will decay to the rest state in the absence of chemical x2. So
we shall call x2 and activator chemical and correspondingly x1 as an inhibitor
chemical. Now according to (32)

µ2

a22
<

µ1

ā11
. (33)
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Also T < 0 implies ā11 > a22. Taken with (33), this last inequality implies

µ2 < µ1. (34)

Thus we find that for a diffusive instability the inhibitor chemical should dif-
fuse more rapidly that the activator chemical. (Here, “diffuse faster” means
that the corresponding µ is larger.) Thus we get some insight into how nature
might biologically structure the communication between cells in terms of activa-
tor and inhibitor substances. Turing terms these activator-inhibitor chemicals
morphogens. The existence of morphogens in nature has been controversial for
many years, and only recently have these substances been discovered in biolog-
ical systems, with functions very close in concept to those envisaged by Turing.

With these inequalities satisfied we can now see specifically how a pattern
can form from a diffusive instability. We know that we need to make D̄ =
D − µ1k

2a22 + µ2k
2ā11 + µ1µ2k

4 negative, where D > 0. This is a quadratic in
k2 of the form D − c1k

2 + c2k
4, c1, c2 > 0. The minimum occurs at

k = kmin =
√

a22µ1 − ā11µ2

2µ1µ2
. (35)

At that minimum

D̄ = D − (a22µ1 − ā11µ2)2

4µ1µ2
. (36)

Since we must make D̄ < 0 we must have

a22µ1 − ā11µ2 > 2
√

µ1µ2D. (37)

This last result gives us a complete set of conditions for the occurrence of a
pattern instability.

Let us apply this now to our ring of cells. The pattern must now be periodic
in s, and so k must be an integral multiple of 2π/L, where L is the circumference
of the ring. The smallest k that will allow a pattern is therefor 2π/L. Thus
the condition for the instability of the first realizable pattern is that (37) be
satisfied ins such but also that the values of k for which this holds include the
value 2π/L, see the figure below.
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We mention that there have been many elaborations of Turing’s idea applied
to problems of mathematical biology, see the book by Murrray referenced below,
and in recent years Turing’s morphogens, or at least substances with function
similar to shatg Turing proposed, have been isolated in the laboratory.

An example: Consider two chemicals (x, y) with reaction equations

dx

dt
= 1/2− x + x2y,

dy

dt
= 1− x2y. (38)

(The constants on the right represent sources of the chemicalss, something we
have not considered until now. We will not try to relate these equations to
specific chemical reactions, however.) One sees that the unique equilibrium is
(xe, ye) = (3/2, 4/9). The corresponding matrix of the linearized isolated cell at
this equilibrium is

A =
(
−1 + 2xy x2

−2xy −x2

)

(x,y)=(xe,ye)

=
(

1/3 9/4
−4/3 −9/4

)
. (39)

Here a22 = −9/4 indicates that y is the inhibitor. We see that

D̄ = 9/4 +
9
2
µxk2 − 1

3
µuk2. (40)

If µx = 1, then the condition for a diffusive or pattern instability is

−
9
4

+
1
3
µy > 3

√
µy. (41)

This occurs when √µy > 9+
√

108
3 .
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