
Notes on the bucket-brigade production line

We consider a production line which produces widgets. The line consists of a series of
machines where operations are performed. We take the line to have unit length, and the
position of the kth worker on the line to be xk. We assume each worker moves along the
line with a constant velocity vk. Then 1/vk = Tk is the time it would take worker k alone
to produce one widget.

In addition to constant velocity, the following assumptions are made: Workers do not
”cross over”, i.e. pass each other, on the line. Imagine the workers move from left to right.
Then a fast worker who meets up with a slower worker will be blocked by the slower worker.
That is, the faster worker will move along the line at the velocity of the slower worker.

Suppose there are n workers, worker 1 on the left up to worker n on the right. We say
a reset occurs when the nth worker finishes the widget. At a reset, worker n takes over the
widget held by worker n− 1, worker n− 1 takes the widget from n− 1, etc., worker 2 from
worker 1, and then worker 1 introduces a new widget (or whatever starts the process) into
the system. We assume the reset occurs instantaneously. Of course, in fact some time is
needed to reset, so the assumption is that this actual reset time is small compared to the
manufacturing time for the widget.

The system can be thought of a starting with workers in fixed positions on the line,
waiting for a widget. Worker 1 starts the process, and when worker 2 is encountered hands
off the item and takes a new one, while worker 2 continues until encountering worker 3,
hands off, takes from 2, 2 from 1, etc. Eventually all workers have widgets, and this is
where we begin to observe the dynamics of the production line.

We begin our observation at a reset. In this case we know that x1 = 0, so the
state of the line at reset is determined by the n − 1-vector X = [x2, x3, . . . , xn], with
0 ≤ x2 ≤ x3 ≤ . . . ≤n≤ 1. We can thus describe the performance of the line by the discrete
sequence of vectors X(k) giving worker positions at reset times, and by the sequence of
reset times T (k). For example the average production rate of widgets would be

P ≡ lim
M→∞

M

T (1) + T (2) + . . . + T (M)
.

An example: Consider a two-person bucket-brigade production line. Worker 1 can
produce a widget in 1 hour, worker 2 in 1/2 hour. The v1 = 1, v2 = 2. (Note: the actual
units of time are not important here. It will be clear below that only the relative velocities
of workers is important, here that worker 2 is twice as fast as worker 1.) At the reset time
worker 1 is at x1 = 0 and worker 2 is at x

(1)
2 . We may assume 0 < x

(1)
2 < 1.
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In the figure below, we show an x − t diagram of the subsequent worker positions,
assuming x

(1)
2 = 1/2

Figure 1. Two-person bucket brigade with v1 = 1, v2 = 2, and x
(1)
2 = .5.

Here the points marked 1-4 are (x(k)
2 , T (k)), k = 1, 2, 3, 4 and give the times and loca-

tions at reset. There are respectively 1/2, 0), (1/4, 1/4), (3/8, 5/8), (5/16, 15/16).
We can easily compute these values of x

(k)
2 from the resets. We see that

x
(k+1)
2 =

v1

v2
(1 − x

(k)
2 ) =

1
2
(1 − x

(k)
2 ).

We thus get the first order inhomogeneous recursion 2x
(k+1)
2 + x

(k)
2 = 1. The solution is

x
(k)
2 = 1/3(1 − (−1/2)k). We thus see that

lim
k→∞

= 1/3.

with x2 = 1/3 at reset wee see that the production line repeats itself with every reset. We
say that the line is balanced when the equilibrium is reached. In this balance case a widget
is finished every 1/3 of a time unit, or we get 3 widgets per time unit as the production
rate. We can see from the recursion that x

(k)
2 → v1

v1+v2
≡ x∗

2 (verify this!), which means
that a widget is produced every x∗/v1 = 1

v1+v2
time units, or v1 + v2 = 3 widgets are

produced every time unit.
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The main theorem of this model of the BB(Bartholdi et al. 1995): If an n-
worker BB is sequenced so that v1 < v2 < v3 < . . . < vn, then the line is balanced, and
the production rate at equilibrium is P = v1 + v2 + . . . + vn items per unit time. This
production rate is optimal over all possible sequencing of workers. We omit proof of this
and continue with examples. We remark that the sequencing v1 < v2 < v3 < . . . < vn is
not a necessary condition for optimal production.

Consider our example with the sequence of two workers reversed, v1 = 2, v2 = 1. With
again x

(1)
2 = 1/2, we get the x − t diagram shown below.

Figure 2. Two-person bucket brigade with v1 = 2, v2 = 1, and x
(1)
2 = .5.

Now we see that the first reset occurs at t = .5 when both workers arrive at x = 1.
After the reset 2 is holding 1’s widget at x = 1 and 1 is back at x = 0 with a new widget.
Thus x

(2)
2 = 1. Immediately 2 finishes the widget and rests by taking 1’s widget at x = 0.

Thus both are holding widgets at x = 0 after the reset and so x
(3)
2 = 0. Now 1 is blocked

by the slower 2 and both proceed at velocity v2 = 1 along the line until the next reset at
t = 1.5. The fact that two resets occur instantly, followed by another reset time unit 1
later, means that two completed widgets are delivered (simultaneously) per unit time, so
P = 1 and the production rate is suboptimal. (Note that P = 2v2 here, compared with
the optimal value of v1 + v2.)

For a two-worker BB the two cases we have examined may be summarized in a dif-
ference equation for x

(k)
2 which contains both. Note that if blocking occurs a time tb

following a reset (where 2 was at x
(k)
2 say, and necessarily with v1 > v2), at xb say, this
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means that xb = v1tb = x
(k)
2 +v2tb. Thus tb = x

(k)
2

v1−v2
and xb = v1x

(k)
2

v1−v2
. Since xb ≤ 1 we have

v1x
(k)
2 ≤ v1−v2 and this implies v1

v2
(1−x

(k)
2 ) ≥ 1. Since blocking at a point xb > 0 leads to

x
(k+1)
2 = 1 we can replace the recursion by the general relation x

(k+1)
2 = min[ v1

v2
(1−x

(k)
2 ), 1].

Note that once the ”1” is obtained in this minimum, the sequence 1, 0, 1, 0, 1, . . . begins.
The three-or-more-worker BB: We consider some aspects of the three-worker BB.

After reset k, each worker have time (1− x
(k)
3 )/v3 before the next reset. During that time

the first two workers cannot proceed further than the distance they can travel in time
(1 − x

(k)
3 )/v3 at their respective velocities, or else by the final positions of the workers to

their right, if they are blocked. We thus can obtain the dynamics from a chain of minima:

x
(k+1)
3 = min[x(k)

2 +
v2

v3
(1 − x

(k)
3 ), 1]

,
x

(k+1)
2 = min[

v1

v3
(1 − x

(k)
3 ), x(k+1)

3 ].

It should be clear that we can extend this argument to the n-worker line. Problem 4 of
homework 7 will explore an example of this, which shows that optimal production does
not require monotone ordering from slowest to fastest workers.

For n ≥ 4 the line’s dynamics can be chaotic. We show an example in the next figure.

Figure 2. Chaotic behavior in a 4-person bucket brigade with v1 = 3, v2 = 3.5, v3 =
2, v4 = 4. The plots x2 versus x3.
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