Applied math IT Spring 2003
The bursting balloon reconsidered

Kirchoff’s solution of the IVP for the 3D wave equation is
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Here S is the spherical survace with center at x and radius ¢t and dS’ indicates that the point x’ is
integrated over the surface S.

We now reconsider the bursting balloon and recover the solution using the Kirchoff formula. Here u is
the pressure p. The firgure below indicates the geometry. The law of cosines implies
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The surface of intersection of S with the balloon has area 2m(1 — cosa(ct)?. This is easily established in

spherical coordinates. (This is a calculus exercise worth doing if you don’t recall this.) Now the only term
we need to consider in the Kirchoff formula is the second one. Since
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Here R+ ry > ¢t > R — 1. For any other value of R the area of intersection with the balloon is zero and
so p = 0.This is the result we obtained previously by reducing the balloon problem to an IBVP for the
one-dimensional wave equation in spherical coordinates.




