1. **Ito and Wiener integrals**

 a) Let \(f(t) = \sin t \). Consider the Ito integral \(X = \int_0^{\pi/2} \sin(t) \, dw \). Calculate the mean and the variance of \(X \).

 b) Performing a formal integration by parts and write down the "Wiener version" of this integral. Let us denote it by \(Y \).

 c) Simulate 3000 realizations of \(X \) and \(Y \) by discretizing the integrals with \(dt = 0.001 \). Compare the corresponding histograms.

2. **First-passage times**

 a) Let \(x(t) \) be a Brownian motion and \(t_0 \) a fixed time. Check that \(y(t) = x(t + t_0) - x(t_0) \) is a Brownian motion and \(y \) is independent of \(x(t), t \leq t_0 \).

 b) Let \(\tau_a = \min\{t : x(t) = a\} \) be the first time when \(x(t) \) reaches the value \(a \). Argue that \(x(t + \tau_a) - x(\tau_a) \) is a new Brownian motion, independent of \(x(t), t \leq \tau_a \). (No rigorous proof needed!).

 c) The following is known as the reflection principle for Brownian motion: if \(a \) and \(b > 0 \), then,

 \[
 P(\max_{0 \leq s \leq T} x(s) > a, x(T) < a - b) = P(x(T) > a + b)
 \]

 Use part b) to justify this formula, noting that \(y(t) \) and \(-y(t) \) have the same distribution. Make a picture and explain why it is called "reflection principle".

 d) Compute \(P(\max_{0 \leq s \leq T} x(s) > a, x(T) < a) \) and use symmetry to get the following formula

 \[
 P(\max_{0 \leq s \leq T} x(s) > a) = 2P(x(T) > a) = \frac{2}{\sqrt{2\pi T}} \int_a^{\infty} e^{-\frac{x^2}{2T}} \, dx.
 \]

 What if \(a < 0 \)?
e) Explain why it is true that \(P[\max_{0\leq t \leq T} x(t) > a] = P[\tau_a \leq t] \).
Use your result in d) and the change of variables \(s = Ta^2 / x^2 \) to find the probability density function for the hitting time \(\tau_a \).

3. **Martingales, iterated conditional expectation.**

a) Let \(Y, X_1, X_2 \) be a random variable such that \(E|Y|^2 < \infty \). Show using the definition of conditional expectation that
\[
E[E(Y | X_1, X_2) | X_2] = E(Y | X_2)
\]
Give an intuitive explanation.

b) As before, let \(E|Y|^2 < \infty \) and let \(X_1, X_2, \ldots \) be an infinite sequence of random variables.
Define \(Z_n = E[Y | X_1, X_2, \ldots X_n] \)
Show that \(Z_n \) is a martingale, i.e. \(E[Z_n | Z_{n-1}] = Z_{n-1} \)
(To show that \(Z_n \) is a martingale you may want to justify and use the following three statements:
\[
E[Z_n | X_1, \ldots X_{n-1}] = Z_{n-1}, \quad E[Z_n | X_1, \ldots X_{n-1}, Z_{n-1}] = Z_{n-1} \text{ and}
E[E[Z_n | X_1, \ldots X_{n-1}, Z_{n-1}] | Z_{n-1}] = E[Z_n | Z_{n-1}]
\]
)

c) Let \(Y \) be uniformly distributed on \([0,1]\) and let \(X_n \) be defined by
\[
X_n = \begin{cases}
0, & Y \in \left(\frac{j}{2^n}, \frac{j+1}{2^n}\right], \; j \text{ even} \\
1, & j \text{ odd}
\end{cases}
\]
Show that \(X_n \) are independent random variables.

d) Calculate \(E[Y | X_1, \ldots X_n] \) explicitly.

e) Check that \(E[Y | X_1, \ldots X_n] \to Y \) \(\to Y \)

f) Give a different example of a sequence \(X_n \) such that \(E[Y | X_1, \ldots X_n] \to \bar{Y} \)
and \(\bar{Y} \neq Y \).
g) Explain how this problem is relevant to problem #3 from problem set 3, assuming \(Y, X_1, \ldots X_n, \ldots \) are Gaussian.
4. **Martingales and Fokker-Plank equation**

Let $F(t) = F(w(t), t)$ be a function. Define a conditional expectation

$$E[F(w(t)) \mid w(s) = x] = f(x, s), \quad s < t.$$

\[F_{w(t)}(w(t)) = E[F(w(t)) \mid w(s) = x] = f(x, s), \quad s < t. \]

a) Show that $f(x, s) = \frac{1}{\sqrt{2\pi(t-s)}} \int F(y)e^{-\frac{(y-x)^2}{2(t-s)}} dy$.

b) Conclude that $\frac{\partial f}{\partial s} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0$. This is known as Fokker-Plank equation or Kolmogorov backward equation.

c) Use the definition of $f(x, s)$ and your result in b) to justify the following statement: “Let $\varphi(t, w(t))$ be a smooth function. It is a martingale if and only if it satisfies the Fokker-Plank equation, that is, if $\frac{\partial \varphi}{\partial s} + \frac{1}{2} \frac{\partial^2 \varphi}{\partial x^2} = 0$.”

e) Prove the statement using Ito’s formula.

f) Verify that $\varphi(x, t) = e^{\frac{\lambda}{2} x^2 t}$ is a solution of the Fokker-Plank equation. This gives you another way to show that $e^{\frac{\lambda}{2} (w(t) - \lambda t)}$ is a martingale.