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Abstract

A general approach for calibrating Monte Carlo models to the market prices of
benchmark securities is presented. Starting from a given model for market dynamics
(price diffusion, rate diffusion, etc.), the algorithm corrects for price-misspecifications
and finite-sample effects in the simulation by assigning “probability weights” to the
simulated paths. The choice of weights is done by minimizing the Kullback-Leibler
relative entropy of the posterior measure to the empirical measure. The resulting
ensemble prices the given set of benchmark instruments exactly or in the sense of pe-
nalized least squares. We discuss pricing and hedging in the context of these weighted
Monte Carlo models. Significant reduction of variance due to the model calibration
is demonstrated theoretically as well as numerically. Concrete applications to the
calibration of stochastic volatility models and term-structure models with up to forty
benchmark instruments are presented. Implied volatilities, forward-rate curves and
exotic option pricing are investigated with several examples.

1 Introduction

According to Asset-Pricing Theory, security prices should be equal to the expecta-
tions of their discounted cash-flows under a suitable probability measure. This “risk-
neutral” measure represents the economic value of consuming one unit of account on a
given future date and state of the economy. A risk-neutral probability implemented in
the context of a specific market is often called a pricing model. 1t is self-evident that
a pricing model should reproduce correctly the prices of liquid instruments which are
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actively traded in the market. This ensures that “off-market”, less liquid, instruments
are realistically priced by the model.!

Here, we consider pricing models based on Monte Carlo (MC) simulations of future
market scenarios (“paths”). 2 Prices are computed by averaging discounted cashflows
over the different paths. We shall be concerned with the calibration of such models,
i.e. with specifying the statistics of the sample paths in such a way that the model
matches the prices of benchmark instruments traded in the market.

Most calibration procedures rely on the existence of explicit formulas for the prices
of the benchmark instruments. The unknown parameters of the underlying stochastic
process are found by inverting such pricing formulas, either exactly or in the sense
of least-squares. Unfortunately, in Monte Carlo simulations, this method may not be
sufficiently accurate enough due to sampling errors (the finite sample effect). Further-
more, closed-form solutions for prices may not always be available or easy to code.
In the latter case, fitting the model to market prices implies searching the parameter
space through direct simulation, a computationally expensive proposition.

This paper consisders a general, non-parametric, approach for calibrating Monte
Carlo models and applies it to several practical situations. The main idea behind our
method is to put the emphasis on determining directly the risk-neutral probabilities of
the future states of the market, as opposed to finding the parameters of the differential
equations used to generate the paths for the state-variables.

One way to motivate our algorithm is to observe that Monte Carlo simulations
can be divided (somewhat arbitrarily) into two categories: those that are uniformly
weighted and those that are non-uniformly weighted. To wit, consider a set of sample
paths, denoted by w1, ...w,, generated according to some simulation procedure. By
definition, a uniformy weighted simulation is such that all sample paths are assigned
the same probability. Thus, a contingent claim that pays the holder h; dollars if the
path w; ocurrs, has model value

1 14
I, = ;;hi. (1)

A non-uniformly weighted simulation is one in which the probabilities are not nec-
essarily equal. Suppose that we assign, respectively, probabilities py, ...p, to the
different paths. The value of the contingent claim according to the corresponding
“non-uniformly weighted” simulation is

II;, = Z hip; . (2)
i1

Our approach is based on non-uniformly weighted simulations. First, we simulate a
large number of paths of a stochastic process followed by the state-variables (prices,
rates, etc. ) under a prior distribution. Second — and here we depart from the

I'Throughout this paper, a pricing model refers to a model for pricing less liquid instruments
relatively to more liquid ones (the benchmarks) in the context of a particular market. This type of
financial model is used by most large investment banks to manage their market positions.

2See Dupire (1998) for an up-to-date collection of papers by academics and practitioners on Monte
Carlo methods in quantitative finance.



conventional Monte Carlo method — we assign a different probability to each path.
Probabilities are determined in such a way that (i) the expected values of the dis-
counted cash-flows of benchmark instruments coincide exactly or within tolerance
with the market prices of these securities and (ii) they are as close as possible to
uniform probabilities (p; = 1/v) coresponding to the simulated prior.

This method allows us to incorporate market information in two stages. The first
step gives a prior probability measure that corresponds to our best guess for the risk-
neutral measure given the information available. This guess may involve real statistics,
such as estimates of rates of return, historical volatilities, correlations. It may also use
parameters which are implied from market prices (implied volatilities, cost-of-carry,
etc). In other words, the path simulation is used to construct a “backbone” or “prior”
for the model which incorporates econometric or market-implied data. The second
step has two purposes: it reconciles the econometric/prior information with the prices
observed at any given time and also corrects finite-sample errors on the prices of the
benchmark instruments which arise from Monte Carlo simulation.

We shall denote the mid-market prices of N benchmark instruments by C1,...,Cn
and represent the present value of the cashflows of the j** benchmark instrument by

Jijr 9255 - Gvj J=1,... N . (3)

The price relations for the benchmark instruments can then be written in the form

Y pigy =Cj, j=1,...N, (4)
i=1

where (p1, ... p,) are the probabilitites that we need to determine. Generically, this
(linear) system of equations admits infinitely many solutions because the number of
paths v is greater than the number of constraints. 3 The criterion that we propose for
finding the calibrated probability measure is to minimize the Kullback-Leibler relative
entropy of the non-uniformly sampled simulation with respect to the prior. Recall
that if p1, ...p, and ¢1 ... g, are probability vectors on a probability space with v
states, the relative entropy of p with respect to ¢ is defined as

D(pla) = ;p g (2) . 5)

In the case of Monte Carlo simulation with ¢; = 1/v = u; we have?

D(plu) = logv+ Y pi logp; . (6)

i=1
We minimize this function under the linear constraints implied by (4). To this effect,
we implement a dual, or Lagrangian, formulation which transforms the problem into

31t is also possible that the system of equations admits no solutions if the prior is inadequate of
if the prices give rise to an arbitrage opportunity. We shall not dwell on this here.
4We shall denote the uniform probability vector by u, i.e. u = (1/v,...1/v).



an unconsntrained minimization over N variables. Optimization of the dual objective
function is made with L-BFGS (Byrd et al (1994)), a gradient-based quasi-Newton
optimization routine.

The use of minimization of relative entropy as a tool for computing Arrow-Debreu
probabilities was introduced by Buchen and Kelly (1996) and Gulko (1995, 1996) for
single-period models. Other calibration methods based on minimizing a least-squares
penalization function of the Arrow-Debreu probabilities were proposed earlier by Ru-
binstein (1994) and Jackwerth and Rubinstein (1995). Samperi (1997), Avellaneda
et al (1997) and Avellaneda (1998) generalized the minimum-entropy method to in-
tertemporal lattice models and diffusions. More recently Laurent and Leisen (1999)
considered the case of Markov chains. These studies suggest this is a computationally
feasible approach that works in several classical context, such as generalizations of
the Black-Scholes model with volatility skew or for one-factor interest rate models.

The use of minimum relative entropy for selecting Arrow-Debreu probabilitites
can be justified on economic grounds. Samperi (1997) shows that there exists a
one-to-one correspondence between the calibration of a model starting with a prior
probability measure and using a “penalization function” on the space of probabili-
ties and the calculation of state-prices via utility maximization. More precisely, the
Arrow-Debreu prices generated by minimizing relative entropy coincide with the mar-
ginal utilities for consumption obtained by maximizing the expectation of the utility
function U(z) = —exp(—a x) by investing in a portfolio of benchmark instruments.
This correspondence is quite general. It implies, most notably, that other “distances”
or “penalization functions” for Arrow-Debreu probabilities of the form

Diplg) = Zw({}) ¢, ¥(@) convex (7)

can be used instead of relative entropy (which corresponds to the special case ¥ (z) =
zlogz). For each such penalization function, there exists a corresponding concave
utility U(z), obtained via a Legendre transformation, such that the Arrow-Debreu
probabilities are consistent with an agent maximizing his/her expected utility for
terminal wealth by investing in a portfolio of benchmarks. 3

The use of relative entropy also has consequences in terms of price-sensitivity
analysis and hedging. Avellaneda (1998) shows that the sensitivities of model values
with respect to changes in the benchmark prices are equal to the linear regression co-
efficients of the contingent claim on the linear span of the cashflows of the benchmark
instruments. In particular, the price-sensitivities can be computed directly using a
single Monte Carlo simulation, ¢.e. without having to perturb the N input prices

5While the particular choice of the mathematical distances D{p|g) remains to be justified, the
different distances between probabilites which result are, roughly speaking, economically equivalent
— except possibly for the particular choice of smooth, increasing, convex utility that might represent
the agent’s preferences. The Kullback-Leibler distance is convenient because it leads to particularly
simple mathematical computations, as we shall see hereafter. Another important feature of relative
entropy is that it is invariant under changes of variables and therefore independent of the choice
parameterization used to describe the system (Cover and Thomas (). We refer the reader to Samperi
(1999) for an in-depth discussion of this correspondence principle.



prices and to repeat the calibration procedure each time. Thus, we hope that this
method may provide an alternative approach to computing hedge-ratios as well.

Practical considerations in terms of model implementation are studied in the last
4 sections of the paper. First, we observe that calibration of Monte Carlo models
to the prices of benchmark instruments results in a strong reduction of variance,
or simulation noise. This is due to the fact that the model effectively averages the
residual cash-flows (modulo the linear space spanned by the benchmarks). Therefore,
instruments which are well-approximated by benchmarks have very small Monte Carlo
variance. In particular, the interpolation of implied volatilities and prices of options
between strikes and maturities is numerically efficient.

In practice, the success of any model-calibration method depends on the charac-
teristics of the market where it is applied. To evaluate the perfomance and the output
of the algorithm, we provide several concrete examples in which the algorithm is put
to work. In particular, we study option-pricing models in the foreign-exchange and
equity markets, using forwards and liquidly traded options as benchmarks. The mod-
els that we use incorporate stochastic volatility and are calibrated to the observed
volatility skew. We also discuss the calibration of fixed-income models, and apply the
algorithm to the construction of forward-rate curves based on the prices of on-the-run
US Treasury securities.

2 Relative entropy distance and the support of the
risk-neutral measure

Relative entropy measures the deviation of the calibrated model from the prior. In-
tiutively, if the relative entropy is small the model is “close” to the prior and thus is
“more desirable” than a model that has large distance from the prior. Let us make
this statement more precise in the context of Monte Carlo simulations. The relative
entropy distance,

D(plu) = logv + Y _pilogp; , ®)
i=1
takes values in the interval [0,logv]. The value zero corresponds to p; = 1/v (the

prior) whereas a value of log v is obtained when all the probability is concentrated on
a single path. More generally, consider a probability distribution which is supported
on a subset of paths of size u and is uniformly distributed on these paths. If we take
u = v*, with 0 < a < 1, and substitute the corresponding probabilities in (8), we
find that
1
D(plu) = logv+ log| — | =(1—-a)logr. (9)
v
Within this class of measures, the relative entropy distance counts the number of paths

in the support on a logarithmic scale. If % <& 1 the support of the calibrated

D(p|v)

measure is of size v, whereas Tog v

= 1 corresponds to a measure with a “thin



support”. Thin supports are inefficient from a computational viewpoint. They imply
that the calibration algorithm “discards” a large number of simulated paths. In this
case, the a priori support of the distribution constructed by simulation will be very
different from the the a posteriori support. This confirms the intuition whereby
calibrations with small relative entropy are desirable.

Figure 1: Schematic graph of the relative entropy function. A probability with
D(plu) = (1 — a) logv is supported essentially on a subset of paths of cardinality
v®. Probabilities with small D(p|u) have large support whereas probabilities sup-
ported on a single path have the highest Kullback-Leibler distance, logv.

This analysis can be applied to more general probability distributions. Let us
write
1

Pi = o i=1,2,..v. (10)

Let N, represent the number of paths with «; = «, so that we have

ZNO,:V, — = 1. (11)

Substituting (10) into (8), we find that



N, 1
D(plu) = logv <1+ Z V—alog (V_“) >
Ny
= logv (1 —Z Fa)

24

= logrv (1-Ef (o)), (12)

which shows that the relative entropy increases if the expected value of « is large.
Due to the constraints implied by (11), this is possible only if there is a wide range of
exponents ;. Since probabilities are measured on a logarithmic scale, the measure
will be concentrated on those paths which correspond to small values of a. A wide
mismatching of probabilities between the calibrated measure and the prior is undesir-
able because this means that certain state-contingent claims will have very different
values under the prior and the posterior measures.

3 Calibration algorithm

We describe the algorithm for calibrating Monte Carlo simulations under market price
constraints. It is a simple adaptation of the classical dual program used for entropy
optimization (see Cover and Thomas (1991)). The new idea proposed here is to
apply the algorithm to the state-space which consists of a collection of sample paths
generated by Monte Carlo simulation of the prior.

To fix ideas, we shall consider a model in which paths are generated as solutions
of the stochastic difference equations

Xnt1 =Xn+0(Xp, n)- &, VAT + p(X,, n) AT, n=1,2,... M (13)

where M AT = Tynax is the horizon time. Here X,, € R? is a vector of state variables
and as a multidimensional process with values and £,, € R is as a vector of indepen-
dent Gaussian shocks (d,d’ are positive integers). The variance-covariance structure
is represented by the v X v’ matrix o(X, t) and the drift is the v-vector u(X, t). ¢

Using a pseudo-random number generator, we construct a set of sample paths of
(41) of size v, which we denote by

w® = (Xl(w@')), ...XM(W))) i=1,2,...v. (14)

We assume throughout this paper that the benchmark instruments are such that
their cashflows along each path w are completely determined by the path itself. In the
case of equities, where the components of the state-vector X generally represent stock
prices, instruments satisfying this assumption include forwards, futures and standard

6This formulation extends trivially to the case of jump-diffusions or more general Markov processes
and the MRE algorithm applies to these more general stochastic processes.



European options. It is also possible to use barrier options or average-rate options.
American-style derivatives do not satisfy this assumption because the early-exercise
premium depends on the value of the option (and hence on the full pricing measure
defined on the paths) as well as on the current state of the world. For fixed-income
securites, benchmark instruments can include interest rate forwards, futures contracts,
bonds, swaps, caps and European swaptions.” Under these circumnstances, the price
relations can be written in the form (4) where g;; is the present value of the cash-flows
of the j** instrument along the ** path. The mathematical problem is to minimize
the convex function of p

D(plu) =logv+ »_ p;ilogp; (15)
i=1
under linear constraints. This problem has been well-studied (Cover and Thomas,

1991). Introducing Lagrange multipliers Ay, ... An), we can reformulate it as a mini-
max program (the “dual” formulation of the constrained problem)

N v
m}?nmgx — D(p|u) + Z Aj (Z Di gij — Cj) (16)

j=1 =1

A straighforward argument shows that probability vector that realizes the supre-
mum for each A has the Boltzmann-Gibbs form

N

1
exp Z 9ij )\j . (17)
j=1

Z(\)

pi =p(w®) =

To determine the Lagrange multipliers, define the “partition function”, or normal-
ization factor,

v N
1
Z(A\) = > Zexp Z gii N | - (18)
=1 j=1

and consider the function
N
W) = log(Z(V) — Y A C

v N N
1
= logq =D exp D g% | 0 =D NG (19)
=1 j=1 =1

We shall denote by g;(w) the present value of the caashflows of the j* instrument
along the path w. (Thus, g;(w;) = gi;). At a critical point of W(A), we have

7 American-style securities, such as Bermudan swaptions or callable bonds do not satisfy this
assumption.
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0= Zoan ~ @
1 v N
= =< ik €XD 1)\ - C
= Ep{gk(w)} - Ck. (20)

Hence, if A is a critical point of W (), the probability vector defined by equation
(28) is calibrated to the benchmark instruments.

Notice that the function W(A) is convex: differentiating both sides of equation
(19) with respect to A yields

02w (\)
OA; O
which is a non-negative definite matrix. In particular, the critical point, if it exists,

should correspond to a minimum of W ().
Based on this, we have the following algorithm:

= Cov? {g;(w) gr(w)} , (21)

(i) Construct a set of sample paths using the difference equations (1) and a pseudo-
random-number generator.

(ii) Compute the cashflow matrix {g;;,4=1, .., j=1,2,..,N,}

(iil) Using a gradient-based optimization routine, minimize the function W(A) in
(19)).8

(iv) Compute the risk-neutral probabilities p; , ¢ = 1, 2, ...v for each path using
equation (28) and the optimal values of \; ... An.

4 Implementation using weighted least-squares

It may not always be desirable to match model values to the price data exactly due
to bid-ask spreads and liquidity considerations. Alternatively, we can minimize the
sum of the weighted least-squares residuals and the relative entropy. We define the
sum of the weighted least-squares residuals

1 1 )
=53 o @@ )} - G, (22
=1 7
where the w = (w; ... wn) is a vector of positive weights.

The proposal is to minimize the quantity

Xs + D(plu) (23)

8In our implementation, we use the L-BFGS algorithm.




over all probability vectors p = (p1 ...p,). Notice that the limit w; < 1 corresponds
to exact matching of the constraints. The discrepancy between the model value and
market price with a weight w; is typically of order \/%

We indicate how to modify the previous algorithm to compute the probabilities

(p1 -..p,) that minimize x2, + D(p|u). Using the inequality

1 1
< 142 19
ab< 50 + 2b , (24)
we find that, for all p,
N T
Xo = -2 X (BP{gj(w)} - Cj)— 52 wjA; (25)
j=1 j=1
It follows that
inf [D(plu) + x5 ] > (26)
P
N 1N
sup inf |D(lu) - > XN (B {gj(w)} — Cj)| - 52 wjA;
p j=1 j=1

N N
. 1
= _Hlf log (Z(\) — D A Cj 3 > wiA;
i=1 i=1

N

= —7,7;,‘f W()\) + % ij)\§ . (27)
j=1

Here, W(A) =log(Z(A) — >_; A; C; is the function used in the case of exact fitting.

The inequality expressed in (27) is in fact an equality. To see this, observe that the
function D(p|lu) + X2 is convex in p and grows quadratically for p >> 1. Therefore, a
probability vector realizing the infimum exists and is characterized by the vanishing
of the first variation in p. A straightforward calculation shows that if p is a minimum
of this function, we have

N
* 1 * s
p; = Z(X")eXp ;)\jgm (28)
with
* 1 *
X = = — (B {g;()} - C) - (29)



In particular, notice that this value of A is such that (25) is an equality. Furthermore,
the probability (28) is of exponential type, so we have

N
D) +x = D)~ (B o)} - 6 ) = 33 wi)?

N
< —inf W(,\)+%Z wiA? |, (30)
A

8o equality must hold. This calculation shows that the pair (\*,p*) is a saddlepoint
of the min-max problem and that there is no “duality gap” in (27) and (30).

The algorithm for finding the probabilities that mimimise x2, under the entropy
penalization consists in minimizing

N N
og(Z00) = % (B {gs@) } = G )+ 3 wid. (D)

among candidate vectors A. This algorithm represents a small modification of the one
corresponding to the exact fitting of prices and can be implemented in the same way,
using L-BFGS. °

5 Price sensitivities and hedge-ratios

The MRE setting provides a simple method for computing portfolio price-sensitivities,
under the additional assumption that the prior measure remains fized as we perturb
the benchmark prices and recalibrate. '© We show, under this assumption, that
sensitivities can be related to regression coeflicients of the target contingent claim on
the cashflows of the benchmarks. For simplicity, we discuss only the case of exact
fitting, but the analysis carries over to the case of least-squares residuals with minor
modifications.

N
9More generally, we can consider the minimization of W(A) + > w;9();), where ¢ is a convex
i=1
function. An argument entirely similar to the one presented above shows that this program corre-
sponds to minimizing the quantity #w*(Ep {T;(w) } — Cj), where 9™ is the Legendre dual
K
of 1. The case ¢¥(z) = |z| can be used to model proportional bid-ask spreads in the prices of the
benchmark instruments, for example.
10This assumes, implicitly, that the prior probability represents information that “varies slow-
ly” with respect to the observed market prices. For example, the assumption is consistent with
interpreting the prior as a historical probability.

11



Let F (w®), i =1,...v represent the discounted cash-flows of a portfolio or con-
tingent claim. To compute the price-sensitivities of the model value of the portfolio we
utilize the “chain rule”, differentiating first with respect to the Lagrange multipliers.
More precisely,

N,

OFEP (F(w)) < OEF (F(w)) 90X (32)
aCy = O\ aCy
We note, using equation (??) for the probability p; , that
OFE? (F(w
OB FW) _ Gov (FW), g5w)} . (33)
O\
Moreover, we have, on account of equation (21),
7] 8 (9dlog(Z(\)
Y (EP = Y (ZEE\EA)
v @@ = o (T
= Cov”{g;(w), gr(w)} (34)
In particular,
ac
o = Cov? {g;(w) gr(w)} - (35)
O\
Substitution of the expressions in (34) and (35) into equation (32) gives
VeEP {F(w)} = Cov? {F(w) g.(w)} -[Cov’{g.w)g.@)}]™",  (36)

with the obvious matrix notation. '* This implies, in turn, that the sensitivities of the
portfolio value with respect to the input prices are the linear regression coeflicients of
F(w) with respect to g;(w). Namely, if we solve

N
mﬁin Var? | F(w) — By — Z B; g;(w) ) (37)
=1

we obtain, from (36),

OFE? (F(w
g, =B EW) 4 N (38)
OCy,
and!?
' The invertibility of the covariance matrix presupposes that the cashflow vectors of the benchmark
instruments, g;(w) j = 1,... N, are linearly independent. This assumption is discussed, for example,

in Avellaneda(1998).

12This result can be interpreted as follows. Assume that an agent hedges the initial portfolio by
shorting ,8]- units of the §* benchmark instrument for 5 = 1,..., N. In this case, the model value
of the net holdings (initial portfolio + hedge) is 3y. It represents the expected cost of dynamic
replication of the residual.

12



N
Bo = BP(F(w) - > B; E? (g;(w)) - (39)
j=1
We conclude that a sensitivity analysis with respect to variations of the input
prices can be done without the need to perform additional Monte Carlo runs and
to perturb the input prices one by one. Instead, the MRE framework allows us to
compute prices and hedges with a single Monte Carlo simulation, which is much less
costly.!3
Notice that the characterization of the hedge-ratios as regression coefficients shows
that they are “stable” in the sense that they vary continuously with input prices. In
practice, the significance of this hedging technique depends on details of the imple-
mentation procedure, such as the number of paths used in the simulation. The main
issue is whether the support of the probability measure induced by the prior — the
basic scenarios of the simulation — is sufficiently “rich in scenarios”, for example.

6 Variance reduction

The calibration of Monte Carlo simulations significantly reduces noise in the pricing
of many cash-flow structures. Claims that are “well-replicated” by the benchmarks
— in the sense that the variance in (37) is small compared to the variance of F(w)!*
— will benefit from a significant noise reduction in comparison with standard MC
evaluation.

In fact, given any vector ¢ = ((q, ---.,Cn), we have
N N
EP(F(w)) = E? ¢ Fw)— Y ¢giw)p + > ¢C. (40)
j=1 j=1

Since the second term on the right-hand is constant, the variance of the Monte Carlo
method for pricing the cash-flow F' is the same as the one associated with ¥ —(-g. This
statement is true for any value of the vector  and so, in particular, for the regression
coefficients (8; ... On). Since, by definition, F' — 3 - g has the least possible true
variance among all choices of {, the cash-flow 8- T is an “optimal control variate” for
the simulation. Our method implicitly uses such control variates.

To measure this variance reduction experimentally in a simple framework, we con-
sidered the problem of calibrating a Monte Carlo simulation to the prices of European
stock options, assuming a lognormal price with constant volatility.

We considered European options on a stock with a spot price of 100 with no
dividends. The interest rate was taken to be zero. Taking a ‘maximum horizon” for
the model of 120 days, we used as benchmarks all European options with maturities
of 30, 60 and 90 days and strikes of 90, 100 and 110, as well as forward contracts
with maturities of 30, 60 and 90 days. We assumed that the prices of the benchmarks

13Tn contrast, a perturbation analysis that uses centered differences to approximate the partial
derivatives with respect to input instruments requires 2 N + 1 Monte Carlo simulations.
14The ratio of the variances is the statistic 1 — R? in the risk-neutral measure.

13



were given by the Black-Scholes formula with a volatility of 25 percent.The prior was
taken to be a geometric Brownian motion with drift zero and volatility 25%.1°

The test consisted of pricing various options (target options) with strike/maturity
distributed along a regular grid (maturities from 20 days to 120 days with 1-day in-
tervals; all integer strikes lying between two standard deviations from the mean of the
distribution). For each option, we compared the variances resulting from pricing with
the simulated lognormal process with and without calibrating to the “benchmarks”.
As a matter of general principle, when pricing an option contract, we also include the
forward contract corresponding to the option’s expiration date in the set of calibration
instruments.'®

All Monte Carlo runs were made with 2000 paths. Each run took roughly half a
second of CPU time on a SunOS 5.6. This includes the time required to search for
the optimal lambdas. We verified the correctness of the scheme by checking that all
model prices fell within 3 (theoretical) standard deviations of the true price, both
with and without the min-entropy adjustment.

Figure 2: Variance Improvement Ratio

Maturity Strike
(Days) 80 85 90 95 100 105 110 115 120
20 N/A N/A 103 222 824 278 154 N/A N/A
30 N/A N/A INF 13.66 INF 19.11 INF 3.09 N/A
45 N/A 125 238 521 14.83 6.63 3.75 225 NJ/A
60 N/A 563 INF 49.83 INF 7398 INF 10.83 3.03
75 1.54 3.04 6.25 10.61 2571 14.08 9.12 5.45 3.05
90 247 879 INF 9240 INF 150.36 INF 2296 5.77
120 196 277 4.09 6.08 13,57 834 577 415 3.03

We found that there was significant variance reduction for all cases, with the
exception of options having strikes far from the money and maturities which did not
match the benchmark maturities. As expected, the best results were observed for
those options with strikes and maturities near to those of the benchmark options.
In particular, options with the “benchmark maturities” (30, 60 and 90 days) yielded
some of the best results for most strikes which were not too far away from the money.
We also obtained some of the best results of options with strikes at or close to the
forward values. The following table gives the factor by which the entropy method
improved the variance for selected strikes and maturity dates. Note that the table
below includes the benchmark instruments which yield an infinite improvement since
the entropy method always prices them correctly (indicated by INF on Figure 2).
Benchmark strikes and maturities are shown in boldface.

The variance reduction from the entropy method translated into some excellent

15We assumed that all benchmark options were correctly priced with the prior to separate the
issues of calibration and variance reduction, focussing on the latter.

16Doing so guarantees that the mean of the distribution of the asset price at the expiration date
is fitted exactly.
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data for the computed standard errors. The figure below containg this information.
The data is given in terms of Black-Scholes implied volatility and is obtained by
taking the standard error of the option price and dividing by the Black-Scholes value
of vega.

Figure 3: Standard Errors from the Entropy Method (In percentage of implied volatil-
ity)

Maturity Strike
(Days) 80 85 90 95 100 105 110 115 120
20 N/A N/A 056 037 032 037 051 N/A N/A
30 N/A NJA 0 016 0 015 0 0.38 N/A
45 N/A 047 035 028 0.26 028 0.34 047 N/A
60 N/A 025 0 010 0 009 O 021 0.45
75 050 032 023 021 021 0.22 024 030 042
90 038 0.19 0 007 0 007 O 0.15 0.32
120 040 033 030 0.29 029 029 031 035 040

Finally, we examined the R? statistic given by the entropy method. We found
that R? was greatest for values with benchmark maturity dates and strikes whose
values are close to that of the forward. The results are given in the table below. Our
interpretation is that the options with benchmark dates or near-the-money strikes
have only a small component of their cashflows which is orthogonal to the benchmark
instruments, and conversely. One would expect both greater variance reduction and
dependence on the values of the benchmark instruments in these cases. Note that the
variance reduction data given in figure 2 confirms this interpretation.

Figure 4: R Squared Statistic from the Entropy Method

Maturity Strike
(Days) 80 85 90 95 100 105 110 115 120
20 N/A N/A 025 057 085 065 044 N/A N/A
30 N/A N/A 1 0.93 1 0.95 1 0.75 N/A
45 N/A 040 063 0.80 091 083 0.72 055 N/A
60 N/A 0383 1 097 1 098 1 091 0.68
75 041 068 083 0.89 095 092 0.88 0.81 0.67
90 062 0.89 1 099 1 099 1 095 0.80
120 051 063 073 0.79 090 085 0.80 0.73 0.64

7 Example: fitting a volatility skew

We apply the algorithm to calibrate a model using forwards and the prices of Eu-
ropean options with different strikes and maturities. This example is take from
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the interbank foreign exchange market. It is well-known that options with different
strikes/maturities trade with different implied volatilities. The goal is to construct a
pricing model that incorporates this effect. Notice that such problem has been ad-
dressed by many authors in the context of the so-called “volatility surface”( Dupire
(1994), Derman and Kani (1994), Rubinstein (1994), Chriss (1996); see Avellaneda
et al(1997) for references on this problem up to 1997). The method presented here is
completely different since we do not iterpolate option prices or use a parameterization
of the local volatility function & (S, t).

Figure 5: Data used for fitting the implied volatilities of options. The implied volatil-
ities, displayed on the left-hand side of the graph, range from 13% to 14.5%. From
Avellaneda and Paras (1996).

We considered a dataset consisting of 25 contemporaneous USD/DEM option
prices obtained from a major dealer in the interbank market on August 25, 1995.
The maturities are 30, 60, 90, 180 and 270 days. Strikes (quoted in DEM) correspond
to 50-, 20- and 25-delta puts and calls. Aside from these options, we introduced 5
additional “zero-strike options” which correspond to the present value of a dollar in
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DEM for delivery at the different expiration dates (see Table 5) — the forward prices
implied by the interest rates and the spot price. Including these forward prices in
the set of benchmark instruments ensures that the model is calibrated to the forward
rates and hence that there is no net bias in the forward prices.

As a prior, we considered the system of stochastic differential equations:

dSy

S_t = gt dZt + /J/dt
Wt W, + vedt, (41)
ot

where Z; and W, are Brownian motions such that E(dZ; dW;) = p dt . In equation
(41), S; represents the value of one US Dollar in DM. The instantaneous volatility
is denoted by o;. The additional parameters are: u, the cost-of-carry (interest rate
differential), &, the volatility of volatility, and v; is the drift of the volatility. Therefore,
we are calibrating a two-factor stochastic volatility model. We assume the following
numerical values for the parameters that define the prior dynamics:

1. So= midmarket USD/DEM spot exchange rate = 1.4887
2. US rate=5.91%
3. DM rate=4.27%

4. y = —1.64% (For convenience, we take y =DM rate - US rate in the prior, i.e.
we adjust the model to the standard risk-neutral drift).

5. oo = Initial value of the prior volatility of USD/DEM = 14%. (This is essentially
the average of the observed implied volatilities).

6. kK =50%
7. p=-50%

We simulated 5000 paths of equations (41), consisting of 2500 paths and their anti-
thetics. The gradient tolerance in the BFGS routine was set to 10~7 and we used equal
weights w; = 1075 for the least-squares approximation. We found that the difference
between model prices and market prices was typically on the order of 10~* — 103
DM, representing relative errors of 1% in the deep-out-of-the money short-term op-
tions and much less 0.1% for at the money options (See Figure 6).

The algorithm initiated with A\; = 0, ¢ = 1,... 30 converges after approximately
20 iterations of the BGFS routine. The entire calibration procedure takes about 4
seconds on a desktop PC with a Pentium II 330 Mhz processor. In practice, compu-
tation times are much faster because the values of lambdas from the previous runs
can be stored and used as better initial guesses.
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Figure 6: Fitting errors and values of lambda for the 30 instruments used in the
calibration.

The relative entropy of the calibrated risk-neutral measure was found to be D(p|u) =
7.39 x 1073. We can interpret this result in terms of the parameter o of Section 2.
We find a valueof a = 1 — % = 0.99913, which would correspond to an “effective
number of paths” v® = 4963 according to the heuristics of Section 2. This represents
an excellent fit in terms of the support of the calibrated measure. In Figures 7, we
present descriptive statistics for the calibrated probabilities, in Figure 8, we plot the
probabilities, which appear to be randomly distributed with a small mean about the
uniform value 1/5000 = 0.0002. Figure 9 displays a histogram of the logarithms of
the probabilities. These results indicate a relatively small scatter about the mean and
a large set of paths which support the posterior measure.
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Figure 7: Descriptive statistics for the vector of calibrated probabilities
(p1, - -, P5000)-

Figure 8: Snapshot of the 5000 probabilities obtained by the method. The values
oscillate about 1/5000 = 0.0002.

The values of the lambdas were between —0.84 and 0.79, which correspond to
moderate variations of the probabilities about their mean. In Figure 9, we present
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a histogram of the 5000 probabilities obtained The distibution of probabilites — or,
equivalently, the distribution of state-price deflators — is unimodal and strongly peaked
about its mean 1/5000 = 0.0002. This confirms that the risk-neutral measure is
supported on the full set of paths generated using the prior.

Figure 9: Histogram of the logarithms of the calibrated probabilities multiplied by
5000. The distribution is unimodal and strongly peaked about log(1/5000) = —8.517.
Observe that there are some outliers corresponding to small probabilities.

To gain insight into the calibrated model, we generated an implied volatility sur-
face, by repricing a set of options on a fine grid in strike/maturity space. We de-
termined the highest and lowest strikes in the input option, which are, respectively,
1.67 and 1.34 DEM, corresponding to the 20-delta options with the longest maturity
(270 days). We then considered strike increments going from the maximum to the
minimum value according to the rule

ki_ .
Emas =1.67=ky , ki = 1?01 , i=1,2,..20 (42)
and maturities
tmin =30=¢ty , & = t;_1 + 10, i=1,2,..24. (43)

We repriced these 480 options with the weighted Monte Carlo and generated a sur-
face by interpolating the implied volatilities linearly between strikes and dates. The
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interpolation was done graphically using the Excel 5.0 graphics package. The results
are exhibited in Figures 10 and 11.

Finally we tested the model by pricing a barrier option with the following charac-
teristics:

1. Option type: USD put, DM call
2. Notional amount: 1 USD
Maturity: 180 days

Strike: 1.48 DM

oo W

Knockout barrier: 1.38 DM

and comparing the results with the price and delta hedge obtained using the Black-
Scholes lognormal model.

Figure 10: Implied volatility surface for the USD/DEM options market based on the
data in Figure 5. The prior volatility is 14%.

Closed-form solutions for the price of barrier options in the lognormal setting
were computed by Reiner and Rubinstein (1991). To compare with our model, we
used a Black-Scholes constant volatility of 14% — which corresponds to the implied
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volatilities of short-maturity options — as well as with a constant volatility of 13%.
The latter corresponds to the implied volatility of the ATM forward call expiring in
180 days. The differences in the Black Scholes prices and deltas by changing the
volatilities from 13 to 14% are quite small. In Figure 12, we compare the results of
applying the closed-form solution with 14% volatility are compared with the Monte
Carlo simulation model described above. The values obtained with both models agree
to 3 significant digits.

Figure 11: Call prices associated with the implied volatility surface of Figure 10.

To evaluate the quality of the hedges, we computed the “net delta” of the exotic
option given by the model and compared it with the Black-Scholes delta. For this,
we assumed that the input options have the same deltas under BS than under our
model. Of course, this a simplification, since the deltas of the individual options may
be affected globally by the differences in implied volatilities. However, experience
shows that such approximation is reasonable, in the sense that we do not expect
the volatility skew in this market to distort significantly the deltas of the plain-vanilla
options. The total amount of forward dollars needed to hedge the knockout is obtained
by converting each option hedge into an equivalent forward position and summing over
all contracts with the same maturity. To this amount we also add the corresponding
sensitivity to the forward contract (modeled here as a call with strike 0).
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Figure 12: Price and hedge report for the reverse-knockout barrier option. Notice
that the calibrated model computes exposures to all the options and forwards entered
as reference instruments. Instruments that have an exposure (in notional terms) of
more than 10% of the notional amount of the exotic option are labeled with asterisks.
We observe significant exposure (1) at 60 and 90 days near the knockout barrier and
(2) at the expiration date in ATM and low-strike options. Hedges at th barrier involve
a spread in contracts with neighboring strikes, as espected.

Adding the “forward deltas” associated with the different maturities, we find a
total of 1.567% which is near the Black-Scholes value of 1.80 The results obtained in
this example appear reasonable, despite the fact that the computation was done using
Monte Carlo simulation with only 5000 paths. We believe that this is due in part to
the reduction of variance which results from calibration process.

8 Example 2: Fitting the smile in AmericaOnline
options on May 1999

We calibrated another stochastic volatility model to the mid-market prices of 35
America Online call prices recorded on May 10, 1999 at the close.

To ensure sufficient liquidity of the benchmarks, we took only options with traded
volume above 100 for shorter maturities and above 50 for the maturity longer than
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Maturity | Strike | Price | IVOL || Maturity | Strike | Price | IVOL
12 120 12.125 | 78.33 68 150 12.25 | 87.99
12 130 7.125 | 83.73 68 170 7.625 | 87.60
12 135 5.125 | 83.29 68 175 6.625 | 86.80
12 140 3.625 | 83.40 68 180 6 87.54
12 145 2.625 | 85.16 68 200 3.75 | 87.84
40 115 21.75 | 85.34 159 120 | 32.625 | 83.90
40 120 | 18.875 | 85.27 159 125 30.25 | 83.19
40 125 16.25 | 84.96 159 150 21.5 | 83.43
40 135 12.25 | 86.86 159 160 19 84.19
40 140 | 10.625 | 87.80 257 100 | 48.375 | 81.21
40 160 5.5 87.65 257 110 | 43.375 | 80.80
68 100 | 35.625 | 88.52 257 120 38.75 | 80.07
68 110 29 86.98 257 130 | 35.125 | 80.76
68 115 | 25.875 | 85.55 257 150 | 28.125 | 79.73
68 120 23.25 | 85.61 257 160 | 25.375 | 79.77
68 125 | 20.875 | 85.78 257 170 23 79.98
68 135 | 17.125 | 87.80 257 200 | 16.625 | 78.93
68 145 | 13.625 | 87.54

Figure 13: America Online call (mid-market) prices on May 10, 1999

half a year. It can be seen from the table that the implied volatilities of the benchmark
calls vary in the range 78.33-88.52%. These extreme volatilities correspond to deeply
in- or out-of-the money short term options. We also included forward prices for the
stock at the different delivery dates, namely 12, 40, 68, 159 and 257 days. Thus, we
calibrated the simulation to 40 benchmark prices.

We simulated v = 10,000 Monte Carlo paths from this distribution on the time-
horizon of 258 days with 1 time-step per day. We used the following parameters:
So = 128.375 (the America Online closing price on May 10, 1999), o9 = 0.86, p =
—0.5, r = 5% and s = 0.5. Then, we applied the MRE method described in section
3.2 to calibrate the uniform distribution on the obtained sample paths to the set of
35 European call prices on America Online given in Figure 13.

The program matched all the given 40 benchmark prices with the predefined ac-
curacy to 4 decimal places using 181 iterations starting from A = 0. The obtained
entropy of the calibrated measure on the path space was 0.66 with the maximum
possible entropy being log 10000 = 9.21, indicating that the prior distribution its not
far in the entropy distance from the calibrated one.
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Figure 14: Implied volatility surface for AOL option closing prices, calibrated to the
prices of Figure 13. The additional parameters are spot price=128.312, o9 = 86%,r =
5%,k = 50% and p = —50%. The relative entropy distance to the prior is D = 0.66.

Figure 14 displays the implied volatility surface associated with the calibrated
model. This surface was obtained by pricing a dense grid of plain-vanilla options
with the calibrated Monte Carlo. Figure 15 represents the surface of corresponding
call option prices. Notice that the shapes of the implied volatility surfaces in both
examples are quite different Of course, the call price surfaces appear to be more
similar: from well-know no-arbitrage relations, they are both convex and decreasing
in the strike direction and monote-increasing with expiration.
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Figure 15: Surface of call prices corresponding to the implied volatility surface of Fig.
14.

9 Example 3: constructing a US Treasury yield curve

We considered the following calibration problem: given the current prices of on-the-
run treasury securities, construct a smooth forward rate curve consistent with these
pricesand perform sensitivity analysis around them (as would be done for

the hedging of a hypothetical fixed-income portfolio).

Table 16 shows the on-the-run instruments and the prices observed in the morning
of Thursday, April 15 1999.

A stochastic short-rate model was used to discount future cash flows. As a prior,
we considered the modified Vasicek model

dr=a(m(t)—r)dt +ocdW (44)

Here, m(t) is the—possibly time-dependent—Ievel of mean reversion, and the constant
a controls the rate of mean reversion. We experimented with two types of mean-
reversion levels: constant levels and time-dependent levels, where the latter were
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Maturity | Coupon Price

07/15/99 - 98.955
10/14/99 - 97.823
03/30/00 - 95.725
03/31/01 | 4.875 99.875

02/15/04 | 4.75 | 98.812
11/15/08 | 4.75 | 97.219
02/15/29 | 5.25 96.250

Figure 16: Seven benchmark US-treasury bills and bonds. Prices are as quoted on
04/15/99 and not adjusted for accrued interest. The alignment of prices reflects the
direction of the sensitivities listed below in Figure 1: left alignment indicates positive
sensitivity, right alignment negative sensitivity

Scenario | « m(t) o
I 0.25 | 0.0426035 | 0.01
II 0.25 | 0.0426035 | 0.05
111 0.25 | bootstrap | 0.01
v 0.25 | bootstrap | 0.05

Figure 17: Various prior instantiations of the coefficients of (44). 0.0426035 is the
rate of the first leg of the piecewise constant bootstrapped forward rate curve

taken to be m(¢t) = the piecewise-constant (bootstrapped) instantaneous forward-rate
curve.!”

Figure 17 shows several prior instantiations of the coefficients of (44).

We calibrated the modified Vasicek model with 15000 Monte-Carlo paths and
24 time steps per year. Figure 18 shows the calibrated forward-rate curve and zero-
coupon-bond yield curve for scenarios I and II, with constant level of mean reversion.
Figure 19 shows the calibrated forward-rate curve and zero-coupon-bond yield curve
for scenarios III and IV. In these scenarios, the level of mean reversion m(¢) is set to
the piecewise constant bootstrapped forward rate curve consistent with the data in
Figure 16.

In accordance with the work of Samperi(1997) and others, the optimal Lagrange
multipliers X; can be interpreted in terms of an optimal investment portfolio. Specif-
ically, consider an expected CARA utility function defined on the space of static

17These are arbitrary modeling choices. For example, we could start with an econometrically
calibrated forward rate curve or with a level of mean-reversion that corresponds to an estimate of
forward rates for long maturities. Bootstrapping is standard method for building a forward rate
curve: it works by assembling forward rates instrument by instrument, earlier maturities first. Rates
are constant between maturities and jump at maturities.
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Figure 18: Forward-rate curve and zero-coupon-bond yield curve for scenario I (¢ =
0.01) on the left side, and scenario II (¢ = 0.05) on the right side

portfolios (#1,...8n) as follows:

1< _ZN 8; (9i;—Cy)
U - _ = j=1 73 3 il
0) = =3 e 2 (45)
i=1
Since A* minimizes log(Z (X)) — X- C, it follows from the analysis of §3 that the vector
of Lagrange multipliers and the optimal portfolio are in simple correspondence: we
have

Xi=—86;,j=1,...N .

y (46)

Sensitivities are the opposites of the optimal portfolio weights for (45). A negative
lambda corresponds to a “cheap” instrument (hence # > 0) and a positive lambda to a
“rich” instrument (hence # < 0). The Lagrange multipliers, or sensitivities, A], ..., A\
for all four scenarios are summarized in Table 1. Making m(¢ time-dependend does
not change the sensitivities significantly (scenario I versus III and II versus IV). The
Lagrange multipliers corresponding to short-term instruments, however, are very high
if the prior volatility is low (¢ = 0.01 in scenarios I and IIT).
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Figure 19: Forward-rate curve and zero-coupon-bond yield curve for scenario III
(o = 0.01) on the left side, and scenario IV (¢ = 0.05) on the right side. Both
scenarios revert to the piecewise constant bootstrapped prior m(t) superimposed in
the top row

This last application of the MRE algorithm has also been implemented by one
of the authors (R. Buff) as a prototype software operating remotely via the In-
ternet. The software, which uses periodically updated Treasury securities prices
and/or bond prices entered by the users, is accessible in the Courant Finance Server
(http:/ /www.courantfinance.cims.nyu.edu).

10 Conclusions

We have presented a very simple approach for calibrating Monte Carlo simulations
to the price of benchmark instruments. This approach is based on minimizing the
Kullback-Leibler relative entropy between the posterior measure and a prior mea-
sure. In this context, the prior corresponds to the uniform measure over simulated
paths (hence to the “classical” Monte Carlo simulation). This approach is known
to be equivalent to finding the Arrow-Debreu prices which are consistent with an
investor which maximizes an expected utility of exponential type. The advantage of
the minimum-etropy algorithm is that (i) it is non-parametric (and thus not market
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Sensitivities for scenario. . .
Maturity I II III v
07/15/99 32.507 0.582 29.421 0.569
10/14/99 | —17.638 | —0.242 | —15.307 | —0.298
03/30/00 5.359 0.114 4.607 0.123
03/31/01 | -1.667 | —0.056 | —1.692 | —0.055
02/15/04 0.085 0.009 0.211 0.010
11/15/08 0.340 0.013 0.013 0.005
02/15/29 —0.356 | —0.021 —0.050 | —0.011

Table 1: The sensitivities for the seven benchmark instruments in Table 16, in each of
the four prior scenarios. Sensitivities with absolute value greater than 1 are typeset
in boldface

or model specific) and (ii) it allows the modeler to incorporate econometric infor-
mation and a-priori information on the market dynamics, effectively separating the
specification of the dynamics from the issue of price-fitting.

We showed that the algorithm can be implemented as an exact fit to prices or
in the sense of least-squares. The notion of entropy distance can be interpreted as a
measure of the logarithm of effective number of paths which are active in the posterior
measure. Large entropy distances correspond therefore to “thin” supports and thus
to an ortogonality (in the measure-theoretic sense) between the prior and posterior
measures.

The sensitivities produced by the model can be computed via regression, with-
out the need to simulate the market dynamics and to recalibrate each time that we
perturb the price of a benchmark instrument. Another interesting feature of the
weighted Monte Carlo algorithm is the reduction of variance which results from the
exact pricing of benchmark instruments. In fact, the simulation effectively evaluates
the “residual risk” obtained after projecting the payoff of interest onto the space of
portfolios spanned by the benchmark instruments. Numerical experiments indicate
that the reduction of variance can be significant.

We discussed concrete implementations of the algorithm for the case of foreign-
exchange and equity options, calibrated the underlying dynamics to two-factor sto-
chastic volatility models. We have exhibited numerical evidence that shows that such
an algorithm can be implemented in practice on desktop computers.
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