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1 Introduction

This paper discusses mathematical models in Finance related to feedback be-

tween options trading and the dynamics of stock prices. Specifically, we consider

the phenomenon of “pinning” of stock prices at option strikes around expiration

dates. Pinning at the strike refers to the likelihood that the price of a stock

coincides with the strike price of an option written on it immediately before the

expiration date of the latter. (See Figure 1 for a diagrammatic description of

pinning).

Conclusive evidence of stock pinning near option expiration dates was given

by Ni, Pearson and Poteshman (2005) [8] based on empirical studies. The-

oretical work was done by Krishnan and Nelken (2001) [5], who proposed a

model to explain pinning based on the Brownian bridge. Later, Avellaneda and
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Figure 1: Stock price pinning around option expiration dates refers to the tra-
jectory B which finishes exactly at an option strike price on an expiration date.

2



Lipkin (2003)[1] (henceforth AL) formulated a model based on the behavior of

option market-makers which impact the underlying stock price by hedging their

positions. AL consider a linear price-impact model namely,

∆S

S
∼ E ·Q

where S is the price, E is a constant (elasticity of demand), and Q is the quantity

of stocks demanded. According to AL, pinning is a consequence of the demand

for Deltas by market-makers in the case when the open interest on a particular

strike/expiration is unusually high. In this paper, we consider more general

non-linear impact functions which follow power-laws, i.e., we shall assume that

∆S

S
∼ E ·Qp (1)

where p is a positive number. Such impact models have been investigated by

many authors in Econophysics; see, among others, Lillo et al.[6], Gabaix[2]

and Potters and Bouchaud [9].1 In the particular context of pinning around

option expiration dates, Jeannin et al. [4] suggested that the results of AL

would be qualitatively different in the presence of non-linear price elasticity and,

specifically, that pinning would be mitigated or would even disappear altogether

for sufficiently low values of p.

The goal of this paper is twofold: first, we review the issue of pinning around

option expiration dates, both from the point of view of the AL model and

from empirical data, and, second, we analyze rigorously the non-linear model

(2), expanding on the work of AL along the lines of Jeannin et. al. We find,

in particular, that there exists a “phase transition” of sorts – in the sense of

Statistical Physics – associated with the model’s behavior in a neighborhood of

1To our knowledge, there is not yet a clear consensus for the correct value of the exponent
p, as price impact is difficult to measure in practice.
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p = 1/2. In fact, for p ≤ 1/2, there is no stock pinning around option expiration

dates.

The case p > 1/2 is first analyzed numerically by Monte Carlo simulation.

We show that the probability of pinning at a strike based on model (1) satisfies

Ppinning = c1e
− c2

(p−1/2)+ (1 + o(1)) , (2)

where Ppinning is the probability that the stock price coincides with a strike level

at expiration, for some constants c1, c2. This suggests that that the behavior of

the pinning probability is C∞ around p = 1/2, but not analytic. In other words,

there is an infinite-order phase-transition in the vicinity of p = 1/2, according

to the value of the exponent in (1). For p ≤ 1/2 price trajectories behave like

“free” random walks; for p > 1/2, there is a non-zero probability that they

converge to an option strike level.

The outline of the paper is as follows: first, we review empirical results on

the existence of pinning. Then, we discuss the AL case, p = 1, for which we

have a complete analytical solution. Then, we consider general exponents p.

We present numerical evidence of equation (2) and give a rigorous justification

of (2) for all values of the exponent p, 0 ≤ p ≤ 1 in the form of a theorem.

The mathematical techniques used in the proof consist of Large Deviation

estimates for small-noise perturbation of dynamical systems (a.k.a. Ventsel-

Freidlin theory) and a rigorous version of the real-space Renormalization Group

(RG) technique, which is the key element in deriving (3) and, in particular, the

behavior of the pinning probability around the critical point p = 1/2.
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2 Empirical evidence of pinning

In a comprehensive empirical study on the behavior of prices around option

expirations, Ni, Pearson and Poteshman (2003) (henceforth NPP)[8] considered

two datasets:

• IVY Optionmetrics, which contains daily closing prices and volumes for

stocks and equity options traded in U.S. exchanges from January 1996 to

September 2002

• Data from the Chicago Board of Options Exchange (CBOE) from January

1996 to December 1001 providing a breakdown of option positions among

different categories of traders for each product. This dataset divides the

option traders into 4 categories: market-makers, firm proprietary traders,

large firm clients and discount firm clients. After each option expiration,

the data reveals the aggregate positions (long, short, quantity) for each

trader category.

NPP separated stocks into optionable stocks (stocks on which options had

been written on the date of interest) and non-optionable stocks. The data an-

alyzed by NPP consists of at least 80 expiration dates. There were 4,395 op-

tionable stocks on at least one date and 184,449 optionable stocks/expiration

pairs. There were 12,001 non-optionable stocks on at least one date and 417,007

non-optionable stock/expiration pairs.

The NPP experiments consisted in studying the frequency of observations of

closing stock prices which coincide with strike prices or with multiples of $2.5,

or $5 (which are the standardized strike levels for U.S. equity options) on each

day of the month. By separating stocks into optionable and non-optionable and

looking at the frequency with which the price closed near such discrete levels,

NPP established statistically that stocks are more likely to close near a strike
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level on option expiration dates than on other days. They also showed that pin-

ning is definitely associated with optionable stocks (see Figures 2 and 3). NPP

also compared the cases of non-optionable stocks which later became option-

able and optionable stocks that were previously non-optionable, The empirical

evidence being that the former category is not associated with pinning and the

latter is (Figures 4 and 5).

Percentage of non-optionable stocks closing within $0.25 of 
an integer multiple of $5 

 

Relative Trading Date from Option Expiration Date 
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r e la t i v e  t r a d i n g  d a t e  f r o m  o p t i o n  e x p i r a t i o n  d a t e
 

% 

(Courtesy: Ni, Pearson & Poteshman) 

Expiration Friday 

Figure 2: The different bins correspond to frequencies of instances for which the
closing price of a non-optionable stocks is within $0.25 of a multiple of $5. Each
trading day of the month is labeled with an integer between -10 and +10, and
expiration Friday corresponds to the label 0. Notice that there is no appreciable
difference between the frequencies associated with different days of the month,
suggesting that closing near a level which is a multiple of 5 dollars is equally
probable for different days of the month for non-optionable stocks.
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Percentage of optionable stocks closing within $0.25 of 
a strike price 

Relative Trading Date from Option Expiration Date 
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Figure 3: Frequencies of observations of prices of optionable stocks closing within
$0.125 of a strike price. The data shows that the likelihood that a price ends
near an option strike price is significantly greater on expiration Friday, compared
to other days.
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within $0.125 of an integer multiple of $2.50 
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Figure 4: Same as in Figure 2 for non-optionable stocks which later became
optionable. There is no evidence of pinning.
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Optionable stocks that were previously non-optionable 
closing within $0.125 of an integer multiple of $2.50 
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Figure 5: Same as in Figure 3 for optionable stocks which were previously non-
optionable. Notice the peak at bin 0 which is associated with pinning.
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The conclusions of NPP are that, based on frequencies of observations, op-

tionables are more likely to end near a strike level (which is a multiple of $2.5)

on expiration dates, whereas non-optionables have the same likelihood of closing

near a multiple of $2.5, regardless of whether the day corresponds to the third

Friday of the month or not.

3 A model based on market microstructure

Consider the case of the stock of J.D. Edwards (JDEC) during February and

March 2001. This stock experienced an unusual volume in options with March

expiration during the last days of February as shown in Figure 6. Following a

trade of 4,000 contracts on February 17, a very large volume of March options

with strike price $10 were traded on February 27, bringing the total open in-

terest for puts and calls on the $10 line to 56,000 contracts. Recalling that the

equity option contracts correspond to 100 shares, the total notional shares cor-

responding to the options is 5.6 million shares. On the other hand, the average

traded volume in stocks was approximately 1 million shares.

The existence of this large open interest in the 10-strike options is important,

since the large increase in open interest will potentially increase the trading

volume. Figure 7 shows the chart of the stock during the same period of time.

We notice from Figure 7 that, after the large option trade on February 27, the

stock price became less volatile and converged to the price of $10 which is the

strike price of the options with large open interest.

To connect the stock price dynamics to the increase in open interest in

options, we posit that there is a “feedback effect” due to the demand for Deltas

for hedging the options. To be more precise, we make the following assumptions.
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Figure 6: Evolution of the open interest in March options on JDEC with strike
$10, with a very volume transacted on February 27.
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JDEC in March 2001 
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Figure 7: Evolution of the price of JDEC during the same period. We observe
that the volatility of the stock diminishes after February 27 and the stock price
converges to $10 as the March expiration approaches.
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After the increase in open interest

1. The open interest becomes unusually large relative to normal volumes

2. A significant fraction of market-makers is long options (i.e. they bought

the block of options that traded).

The two assumptions have the following consequences: first, since the open

interest on the particular strike/maturity is large, the notional number of un-

derlying Deltas (in the sense of Black-Scholes) is large compared with typical

trading volumes. In particular, hedging the options – if one were to hedge –

would imply trading relatively large quantities of stocks in relation to normal

trading volume.

Second, the fact that market-makers are long options means that they are

long Gamma. Delta-hedging implies that they will sell the stock when the price

rises and buy the stock if the price drops. Delta-hedging in large amounts may

affect the underlying stock price and drive it to the strike level.

What happens if we assume that assumption 1 holds but not assumption

2? If market-makers are only marginally long, then the demand for stock in

the pattern described above may not be present and there is not price pressure

pushing the stock to the strike price. Also if market-makers are predominantly

short options, they may choose not to hedge or to hedge only partially. This is

due to the fact that delta-hedging a short-gamma position implies buying high

and selling low. On the other hand, if market-makers are long options they earn

money by hedging frequently and thus may indeed impact the stock price. This

is the essence of the AL model.

In order to formulate a quantitative model, we consider the following price-

impact relation:
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∆S

S
∝ E ·

∣∣∣∣ D

< V >

∣∣∣∣p sign(D)
D

< V >
� 1, (3)

where S is the stock price, D is the demand, < V > is the average daily trading

volume and p is an exponent. The choice of the parameter p is a fundamental

question in Econophysics, with different authors proposing different values: p =

0.22 in [6], p = 1/2 in [2], and p=1.5 in [9].

4 AL model

We assume that p = 1 and that

D = −OI ∂δ(S, t)
∂t

dt (4)

where OI represents the open interest on the strike of interest δ is the Black-

Scholes delta, or hedge-ratio for an option in terms of number of shares of the

underlying asset. According to the Black-Scholes formula,

δ = N(d1) =

d1∫
−∞

e−
x2

2
dx√
2π

, d1 =
1

σ
√
τ

(
ln(

Seµτ

K
) +

σ2τ

2

)
,

where σ is the implied volatility, µ is the carry rate, S is the stock price, K is the

strike price and τ = T−t is the time left before the option expires. For simplicity,

we focus the analysis on the strike price with largest open interest and consider

only one potential pinning point.2 From the above considerations, it can be

shown that the stochastic differential equation describing the phenomenon of

stock pinning to leading order is [1],

2In practice, the analysis might involve more than one strike price if the open interest is
large in several contracts.
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dy = −E ·OI
< V >

y − a(T − t)√
2πσ2(T − t)3

e
− (y+a(T−t))2

2σ2(T−t) dt+ σdW, (5)

where y = ln(S/K) and a = µ + σ2

2 . Since we expect the system to be driven

by the drift’s singularity, we assume that a = 0 and introduce the dimensionless

variables

z =
y

σ
√
T
,

z0 =
y0

σ
√
T

=
1

σ
√
T
ln

(
S0

K

)
β =

E ·OI
< V >

√
2πσ2T

s = t/T. (6)

With these new variables the SDE in (6) becomes

dz = − βz

(1− s)3/2
e−

z2

2(1−s) ds+ dW. (7)

4.1 Solution of the model

We set τ = 1− s and seek positive solutions of the Fokker-Planck equation

∂F

∂τ
=

1

2

∂2F

∂z2
− βz

τ3/2
e−

z2

2τ
∂F

∂z
, (8)

of the form

F (z, τ) = exp

[
1√
τ
φ

(
z√
τ

)]
. (9)

Substituting this form in equation (9), we find that φ = φ(ζ) satisfies the SDE

φ+ ζφ′ + φ′′

2τ3/2
+

(φ′)2 − 2βζe−
ζ2

2 φ′

τ2
= 0. (10)
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Since, as τ → 0 the second term in the equation is formally the dominant one,

we consider the eikonal equation

(φ′)2 − 2βζe−
ζ2

2 φ′ = 0,

which has the explicit solution

φ(ζ) = −2βe−
ζ2

2 .

As it turns out, this function also makes the O(τ−3/2) term vanish. Therefore

F (z, τ) = e
− 2β√

τ
e−

z2

2τ
. (11)

is an exact solution of equation (8). In particular, the function

G1(z, τ) = 1− F (z, τ) = 1− e−
2β√
τ
e−

z2

2τ
(12)

satisfies the Fokker-Planck equation (8), with initial condition

lim
τ→0

G1(z, τ) = 0 z 6= 0

= 1 z = 0. (13)

Hence, the analytical formula for the pinning probability is

Ppinning = Prob.
{

lim
s→1
|z(s) = 0| | z(0) = z0

}
= 1− e−2β e

−
z20
2 . (14)

We note that this formula contains two adjustable parameters: z0, the log-

distance from the current price to the option’s strike price measured in standard

deviations, and β, the coupling constant, which is proportional to the dimen-

sionless open interest (OI/ < V >) and inversely proportional to the stock
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volatility and the time-to-expiration. In particular, it suggests that the pres-

ence of a large open interest gives rise to a large probability of pinning, as shown

in Figure 8.

Pinning Probability
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Figure 8: Pinning probability for the AL model (equation (14)) as a function
of the dimensionless parameter β = E·OI

<V >
√
2πσ2T

. The curves show the function

for z0 = 0 and if z0 = 0.5.

5 Empirical evidence in favor of the AL model

We know from NPP that pinning is associated with option expirations; and this

is consistent with our model. However, we made a strong additional assumption
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to justify pinning: namely that market-makers are net long options near the

expiration date. But is this actually the case?

We asked Ni, Pearson and Poteshman to analyze pinning along the lines

of their empirical study taking into account the positions of market-makers,

which is feasible to do using CBOE data. Their results, show in Figures 9 and

10, confirm our second hypothesis: if market-makers are net long options, the

frequency of pinning at option expiration dates is much higher than if market-

makers are net short.

Observations with market-makers net long 
(~$0.125) 

Figure 9: Frequency of pinning at the strike for expirations in which market-
makers are net long options. (Courtesy of Ni, Pearson and Poteshman (2003)).

Additional empirical validation of the model was done by Lipkin and Stan-
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Market-makers net short 

Figure 10: Frequency of pinning at the strike for expirations in which market-
makers are net short options. (Courtesy of Ni, Pearson and Poteshman (2003)).
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ton (2006) [7] in unpublished work. Using the IVY OptionMetrics data, they

obtained clear empirical evidence of monotonicity of the pinning probability as

a function of OI/(< V > σ), consistently with Figure 8 and equation (14); see

Figure 11.

6 Power-law model

We turn to the case in which price/demand elasticity is non-linear and follows a

power law. Based on the previous considerations, we propose the generalization

of the AL model:

dS

S
= −EOI

(
1

< V >

∂δ(S, t)

∂t

)p
sign

(
∂δ(S, t)

∂t

)
dt+ σdW (15)

or, in dimensionless variables,

dz = −β|z|
psign(z)

(1− s)3p/2
e−

pz2

2(1−s) ds+ dW, (16)

the coupling constant being β = EOI
<V >p(2πσ2T )p/2

.

In (16), the drift of the SDE corresponds to a “restoring force” that blows up

as s→ 1, favoring pinning at z = 0 for s = 1. However, this force is localized in

a small neighborhood of the origin, due to the presence of the Gaussian cutoff

function e−
pz2

2(1−s) . The behavior of Z(s) as s approaches 1 is the result of a

tradeoff between these two effects: the restoring force which favors pinning and

the localization with diffusion, which favors not pinning.

To formulate a hypothesis about the model’s behavior, we performed Monte

Carlo simulations to calculate numerically the probability of pinning for a tra-

jectory starting at z0 = 0 for different values of p and for fixed β = 0.2. The

results indicate that there is no pinning for p ≤ 0.5 and that pinning occurs for

p > 0.5 following equation (3). The functional form (2) is strikingly apparent
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Pinning Probability (By Quartile)

Open Interest / (Average Daily Volume × Implied Volatility)
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Figure 11: Empirical result showing the monotonicity of the pinning probability
versus β ∝ OI

<V >σ . (Courtesy of Lipkin and Stanton (2006) [7].

21



from the simulations, as seen in Figures 12, 13 and 14.

Figure 12: Pinning probability as a function of the parameter p for the power-
law impact model. Each point corresponds to a simulation with a different value
of p, with more points used near p = 0.5.

The associated Fokker-Planck equation for general values of p is given by

∂F

∂τ
=

1

2

∂2F

∂z2
− β|z|psign(z)

τ3p/2
e−

pz2

2τ
∂F

∂z
. (17)

A simple analytic solution of this equation such as (14) does not appear to exist

for p 6= 1. Nevertheless, suppose that (17) admits a solution with the boundary

condition (13), which we denote by Gp (z, τ, β). Dimensional analysis implies

that Gp(z, , β) satisfies the RG identity
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Figure 13: Same as Figure 12, but with pinning probability plotted on a log
scale.
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Figure 14: Same as Figure 12. Logarithm of the pinning probability plotted
against 1

2p−1 .
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Gp
(
αz, α2τ, β

)
= Gp

(
z, τ,

β

α2p−1

)
. (18)

Inspired by the numerical results, we shall use Large Deviations and RG

analysis to study the model rigorously for 1/2 ≤ p ≤ 1.

We shall prove the following result:

Theorem: Let z(s) be the solution of the stochastic differential equation

dz = −β|z|
psign(z)

(1− s)3p/2
e−

pz2

2(1−s) ds+ dW, z(0) = z0, 0 ≤ s < 1 (19)

with β > 0.

(i) If p < 1/2, there is no pinning, i.e.,

Prob
{

lim
s→1
|z(s)| = 0 | z(0) = z0

}
= 0

for all z0.

(ii) (Lower bound). Let 0.5 < p. There exists positive constants C1 and C2,

depending only on β, such that

Prob.
{

lim
s→1
|z(s)| = 0 | z(0) = 0

}
> C1e

− C2
(p−0.5) . (20)

(iii) (Upper bound). Let 1/2 ≤ p ≤ 1. There exist constants C3, C4 depending

only on β but not on p such that

Prob.
{

lim
s→1
|z(s)| = 0 | z(0) = 0

}
< C3e

− C4
(p−0.5) . (21)

In particular, there is no pinning for p = 1/2.
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6.1 Absence of pinning for p < 1/2

.

The magnitude of the drift V (z, s) of the SDE (19), satisfies

β
|z|p

τ3p/2
e−

pz2

2τ ≤ βe−p/2

τp
<

β

τp
.

If p < 1/2, V (z, s) is square-integrable in the interval [0, 1] and, furthermore,

1∫
0

(V (zs, s))
2ds < β2

1∫
0

ds

(1− s)2p
=

β2

1− 2p
. (22)

Therefore, for any constant c > 1, we have

E

ec
1∫
0

(V (zs,s))
2ds

 < ec
β2

1−2p ,

so the drift satisfies Novikov’s condition [3] for absolute continuity of the process

z(·) with respect to standard Brownian motion. This rules out pinning for

p < 0.5.

6.2 Technical lemma for the lower bound

Our proof of Part (ii) of the Theorem makes use of a technical lemma which

provides an upper bound for the exit probability of the process z(s) from a

“standardized” parabolic space-time region.

Lemma 1: Let Ω denote the region in the z, s-plane defined by

(i) 0 ≤ s ≤ 3/4,

(ii) |z| ≤ 2
√

1− s,

(see Figure 15) and let θ be the first exit time of z(·) from Ω. Then

lim sup
β→∞

1

β
lnProb. {θ < 3/4 or |z(3/4)| > 1/2 | |z(0)| < 1} = −I (23)
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t 

Z 

1 

2 

Figure 15: The parabolic region Ω used in the proof of Lemma 1. The main
statement of the lemma is that, for large values of β, paths which start at |z| < 1
are most likely to end at |z(3/4)| < 1/2 without exiting Ω. In particular, paths
which either (1) exit before time t = 3/4, or (2) end outside |z(3/4)| < 1/2
have exponentially small probability of the order of exp(−βA), where A is the
Ventsel-Freidlin action. This action is uniformly bounded away from zero.
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where I is a constant independent of p and β.

Proof: We set

ξ(t) = z(t/β), 0 ≤ t ≤ 3β/4.

This process satisfies the stochastic differential equation

dξ(t) = −U(ξ(t), t)dt+ dW (t/β)

= −U(ξ(t), t)dt+
1√
β
dZ(t), 0 ≤ t ≤ 3β/4. (24)

where U(ξ, t) = |ξ|psign(ξ)e
− ξ2

2(1−t/β)

(1−t/β)3p/2 and Z(t) is a Wiener process. If we consider

the region Ωβ =
{

(ξ, t) : ξ < 2
√

1− t/β, 0 ≤ t ≤ 3β
4

}
, the estimate that we seek

corresponds to the first-exit time of (ξ(t), t) from this region, where ξ(t) is a

diffusion process with small diffusion constant 1√
β

.

According to Ventsel-Freidlin (1970) [10], the probability that a trajectory

ξ(·) remains in a tube-like neighborhood of a given path γ(t), 0 ≤ t ≤ ∞ until

time t = 3β
4 is given, for β � 1, by the “action asymptotics”

P {tube around γ(·)} ≈ e−βA(γ)

with

A(γ) =
1

2

∞∫
0

(γ′(t)− U(γ(t), t))
2
dt.

We claim that the actions corresponding to the event of interest are bounded

uniformly bounded away from zero. To see this, we note that U is uniformly

bounded in the region of interest and satisfies

U(ξ) ≥ |ξ|pe−2.
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In particular, the characteristic paths ξ′ = −U(ξ, t) are such that |ξ(t)| < |ω(t)|

where ω′ = −|ω|pe−2. The latter ODE has the explicit solution

ω(t) = (1− p)
1

1−p

[
(ω(0))1−p

1− p
− e−2t

] 1
1−p

. (25)

Notice that as t → ∞, the latter trajectory hits ω = 0 in finite time t < 3β
4 .

Therefore, the characteristic (“zero-diffusion”) paths starting in the interval

|ξ(0)| < 1 also reach zero in finite time.3 For β sufficiently large, they exit the

region through ξ = 0 at time t = 3β
4 . This shows that the action A(γ) of paths

which exits Ωβ before t = 3β/4, or with an absolute value greater than 1/2 for

t = 3β/4, is bounded from below by a positive constant, I. We leave it to the

reader to verify that the constant can be chosen independently of p and β, thus

establishing the Lemma.

6.3 Proof of the lower bound

We consider the parabolic region

Γ =
{

(z, s) : |z| ≤ 2
√

1− s, 0 ≤ s ≤ 1
}
, (26)

which is shown in Figure 16. The proof of the lower bound is based on estimating

the probability that the path z(·) remains inside the region Γ, which clearly

implies pinning.

Let D be the event that the space-time process (z(s), s) remains inside Γ,

i.e.,

D = {(z(·), ·) ∈ Γ } ,

and let tn = 1− (1/4)n, n = 0, 1, 2... We denote the probability measure asso-

3A similar comparison argument can be made for p ≥ 1.
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t 

Z 

Figure 16: Representation of the region Γ used in the proof of the lower
bound. The strategy of the proof is to estimate the probability that a path
x(s), 0 ≤ s ≤ 1 remains confined to the region and also passes through the
highlighted segments. The region can be viewed as an infinite union of parabol-
ically “homothetic” regions which map to the standardized region Ω after the
scaling transformation (28).
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ciated with z(·) by Pβ to emphasize the dependence on the coupling constant.

Then

Pβ(D) > Pβ

{
D; |z(tn)| < 1

2n
,∀n

}
,

=

1/2∫
−1/2

Pβ {(z(s), s) ∈ Ω; z(t1) = x} Pβ
{
D; |z(tn)| < 1

2n
,∀n ≥ 1|z(t1) = x

}
dx

>
(
1− ce−βI

)
Pβ
{
|z(s)| ≤ 2

√
1− s, s ≥ 3/4, |z(3/4)| < 1/2

}
=

(
1− ce−βI

)
Pβ1(D), (27)

where β1 = β22p−1. The third line follows from Lemma 1, where c is a constant

independent of β. The last line follows from the fact that the diffusion equation

governing the process is invariant under the scaling transformation

z1 = 2z

τ1 = 4τ

β1 = β22p−1, (28)

(see equation (18)) . Iterating this last result, we obtain the lower bound

Pβ(D) >

∞∏
n=0

(
1− ce−Iβ(2

2p−1)n
)
. (29)
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Let us evaluate this infinite product as a function of p. We have4

lnPβ(D) >

∞∑
n=0

ln
(

1− ce−Iβ(2
2p−1)n

)
≥ −c

∞∑
n=0

e−Iβ(2
2p−1)n − c2

2

∞∑
n=0

e−2Iβ(2
2p−1)n

> −c
∞∫
0

e−Iβ(2
2p−1)xdx− c2

2

∞∫
0

e−2Iβ(2
2p−1)xdx− (c+

c2

2
)

= − 1

(2p− 1)

1

ln 2

c ∞∫
1

e−Iβu

u
du+ c2

∞∫
1

e−2Iβu

u
du

− (c+
c2

2
).

(30)

This establishes the desired lower bound for the pinning probability for p > 1/2.

Notice that this implies that there is a “phase transition” at p = 1/2, since the

lower bound implies that pinning occurs for p greater than 1/2.

It remains to show that the exponential form associated with the lower bound

also holds as an upper bound, as suggested by the numerical experiments.

6.4 Two more technical lemmas

We begin with:

Lemma 2: Let U1(z, τ) and U2(z, τ) be two positive functions such that U1(z, τ) <

U2(z, τ) for all (z, τ), and let ψ0(z) be an even function which is decreasing for

z > 0. Let ψi, i = 1, 2 denote the corresponding solutions of the Cauchy problem

∂ψi
∂τ

=
1

2

∂2ψi
∂z2

− sign(z)U1
∂ψi
∂z

, z ∈ R τ > 0,

4We use the estimate
∞∑

n=1
f(n) ≤

∞∫
0

f(x)dx for non-negative decreasing functions f(x).
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with ψi(z, 0) = ψ0(z), i = 1, 2. Then,

ψ1(z, τ) ≤ ψ2(z, τ) ∀z ∀τ.

Proof: The proof follows immediately from the Maximum Principle applied to

the PDE satisfied by the function ψ1(z, τ)− ψ2(z, τ).

Lemma 2 is useful to formalize the intuition that, as p increases, the proba-

bility of pinning should increase as well. To show this, we introduce a “modified

drift” which is always greater than unity (as opposed to the drift in the model,

which may take small values).

Let Gp(z, τ, β) represent the solution of the Fokker-Planck equation (17)

with initial condition

Gp(z, τ, β) = 1 if z = 0

= 0 if z 6= 0, (31)

and let Ĝp(z, τ, β) be the solution of the auxiliary PDE

∂Ĝp
∂τ

=
1

2

∂2Ĝp
∂z2

− βsign(z)U(z, τ)p
∂Ĝp
∂z

,

where

U(z, τ) = 1 +
|z|
τ

3
2

e−
z2

2τ ,

satisfying the same boundary conditions (31). (The modified drift alluded to

above is −β sign(z)U(z, τ)p.) Lemma 2 implies that

Gp(z, τ, β) ≤ Ĝp(z, τ, β).

Moreover, since the function 1 + U is greater than 1, (1 + U)p is an increasing
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function of p. Hence, also by Lemma 2, we have

Ĝp(z, τ, β) ≤ Ĝ1(z, τ, β). (32)

Let E(·) denote the expectation value with respect to the probability distribu-

tion of z(s). To evaluate the right-hand side of (32), we use Girsanov’s theorem

and the Cauchy-Schwartz inequality:

Ĝ1(z, τ, β) = E

e
1∫

1−τ
βsign(z(s))dW− β

2τ
2

; lim
s→1
|z(s)| = 0 | z(1− τ) = z


<

E
e2

1∫
1−τ

βsign(z(s))dW−β2τ


1/2 [

E
{

lim
s→1
|z(s)| = 0 | z(1− τ) = z

}]1/2
= e

τβ2

2 [G1(z, τ, β)]
1/2

.

Therefore, using equation (14), we have

Lemma 3.

Ĝp(z, τ, β) < e
τβ2

2 [G1(z, τ, β)]
1/2

= e
τβ2

2

[
1− exp

(
−2β e−

z2

2τ

√
τ

)]1/2
(33)

6.5 Proof of the upper bound

We make use of the renormalization identity (18) with α = 2
1

2p−1 . Accordingly,

Gp

(
z 2

1
2p−1 , τ 2

2
2p−1 , β

)
= Gp

(
z, τ,

β

2

)
;

so

Gp

(
z 2

1
2p−1 , τ 2

2
2p−1 , 2β

)
= Gp (z, τ, β) . (34)
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In particular, the probability of pinning starting at z = 0 satisfies

Prob. {z(1) = 0|z(0) = 0} = Gp (0, 1, β) = Gp

(
0, 2

2
2p−1 , 2β

)
. (35)

We now make use of Lemma 3. Accordingly,

Prob. {z(1) = 0|z(0) = 0} = Gp

(
0, 2

2
2p−1 , 2β

)
< Ĝp

(
0, 2

2
2p−1 , 2β

)
< eβ

2/2

[
1− e

− 4β

2
1

2p−1

]1/2
< eβ

2/2 2
√
β

2
1

2(2p−1)

= 2
√
β eβ

2/2 e−
ln 2

2(2p−1) , (36)

which is what we wanted to show. This concludes the proof of the upper bound

for p > 1/2. The absence of pinning at exactly p = 1/2 follows from similar

considerations, since G1/2 (z, τ, β) < Ĝp (z, τ, β) for any p > 1/2.

7 Conclusions

The model for stock pinning near option expiration dates introduced in Avel-

laneda and Lipkin (2003) was generalized to the case of non-linear, power-law,

price impact functions. The price trajectories of stocks are affected by Delta-

hedging by market-makers which, in the case of large number of options, can

impact the price of the stock, driving it to the strike price.

Mathematically, pinning is described by a stochastic differential equation

with a drift similar to the SDE for the Brownian bridge, except for the fact

that the drift is localized in a neighborhood of the strike price. The result is
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a competition between “pinning to the strike” due to the drift and “escaping”

via diffusion. We show that the model has interesting behavior in terms of

the parameter p and, in particular, pinning occurs only for values of p greater

than 1/2. Furthermore, we were able to characterize precisely the behavior of

the model in a neighborhood of the critical value p = 1/2 via Monte Carlo

simulations and through rigorous upper and lower asymptotic estimates for the

probability of pinning.

References

[1] Avellaneda, M. and M. D. Lipkin(2003), A market-induced mechanism for

stock pinning, Quantitative Finance, Vol. 3, 417-425.

[2] Gabaix, X., (2009), Power Laws in Economics and Finance, Annual Review

of Economics, 1, 255-293.

[3] Ikeda and Watanabe (1981), Stochastic Differential Equations and Diffu-

sion Processes, North-Holland, Amsterdam

[4] Jeannin, M. , G. Iori and D. Samuel (2008), The pinning effect: theory

and a simulated microstructure model, Quantitative Finance, Volume 8,

823-331

[5] Krishnan, H. and I. Nelken (2001), The effect of stock pinning on option

prices, RISK Magazine, December.

[6] Lillo, F., J.D. Farmer, R. Mantegna (2003), Master curve for the price-

impact function, Nature Vol. 421, January.

[7] Lipkin, M. and A. Stanton (2006), Private communication, based on their

derivatives course at Columbia University.

36



[8] Ni, X., N.D. Pearson and A. M. Poteshman (2005), Stock Price Clustering

on Option Expiration Dates, Journal of Financial Economics, Vol 78, 49-

87.

[9] Potters, M. and J.-P. Bouchaud (2003), More statistical properties of order

books and price impact Physica A, 324, 481-514.

[10] Ventsel, A.D. and M.I. Freidlin (1970), Small random perturbations of

dynamical systems, Russian Mathematical Surveys, 25, 1-55.

Dedicated to the staff, students and faculty of the Courant Institute on its 75th

anniversary.

37


