

100 points total.

1. (5 points) Find an equation for the plane tangent to the surface $x^2 + y^2 - z^2 = 1$ at the point $(1, 1, -1)$.
2. (15 points) Find all critical points of the function $f(x, y) = 6xy^2 - 2x^3 - 3y^4$ and classify each as a local max, local min, or saddle point, if possible.
3. (10 points) The integral $\int_{-\infty}^{\infty} e^{-x^2/2} dx$ can be computed using the following trick.
 - (i) Compute $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy$. (Hint: use polar coordinates to write $\{(x, y) \mid -\infty < x < \infty, -\infty < y < \infty\} = \{(r, \theta) \mid 0 \leq \theta \leq 2\pi, 0 \leq r < \infty\}$).
 - (ii) Recall that $\int_a^b \int_c^d f(x)g(y) dx dy = \int_a^b f(x) dx \int_c^d g(y) dy$. (This is even okay here for $a = c = -\infty$ and $b = d = \infty$.) Use this and part (i) to determine $\int_{-\infty}^{\infty} e^{-x^2/2} dx$.
4. (10 points) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x, y) = \left\langle \frac{1}{y^2 + 1}, -\frac{2xy}{(y^2 + 1)^2} + ze^{yz}, ye^{yz} + 2z \right\rangle,$$

and where C is the part of the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ from $(1, 0, 0)$ to $(1, 0, 2\pi)$. (Hint: Can you find a potential function for this vector field?)

5. (15 points) Evaluate $\oint_C (\ln(1 + x^5) - \frac{1}{2}y^2) dx + xy dy$, where C follows

- $y = x^2$ from $(-1, 1)$ to $(1, 1)$,
- $x = 1$ from $(1, 1)$ to $(1, 3)$,
- $x^2 + y^2 = 10$ from $(1, 3)$ to $(-1, 3)$, and
- $x = -1$ from $(-1, 3)$ to $(-1, 1)$.

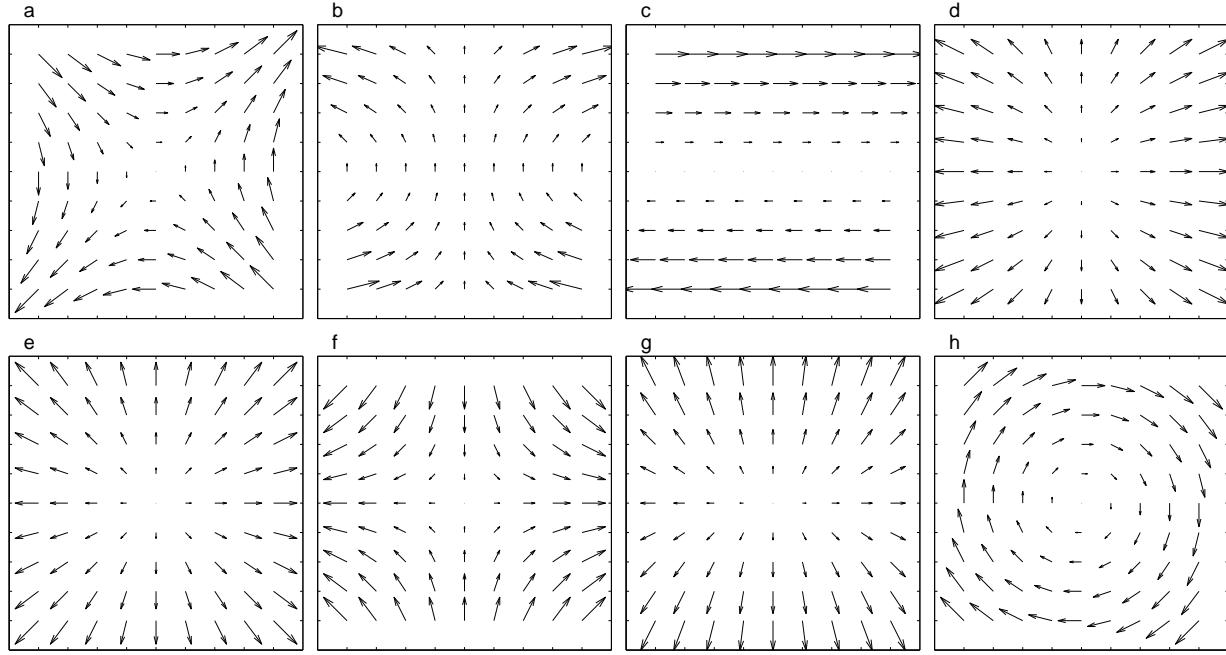
(Hint: Use Green's Theorem)

6. (15 points) Find the surface area of the part of the surface $z = 2 - x^2 - y^2$ that lies above the xy -plane.
7. (15 points) Find the flux of the vector field $\mathbf{F}(x, y, z) = \langle xy^2, yz^2, zx^2 \rangle$ across the unit sphere S ; in other words, compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given \mathbf{F} and S . (Hint: Use the Divergence Theorem.)

more problems on back —→

8. (5 points) For each of the given vector field equations, determine which figure is the corresponding plot of the vector field.

- (i) $\mathbf{F}(x, y) = \langle y, -x \rangle$
- (ii) $\mathbf{F}(x, y) = \langle xy, 1 \rangle$
- (iii) $\mathbf{F}(x, y) = \langle x, y \rangle$
- (iv) $\mathbf{F}(x, y) = \langle 2x, y \rangle$
- (v) $\mathbf{F}(x, y) = \langle x, -y \rangle$



9. (10 points) Answer “true” or “false.” No justification is needed.

- (i) The vector projection of \mathbf{i} onto \mathbf{j} is \mathbf{k} .
- (ii) If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path, then there exists a function f such that $\mathbf{F} = \nabla f$.
- (iii) The vector field $\nabla f(x, y)$ is orthogonal to the contour lines of $f(x, y)$ at each point (x, y) .
- (iv) If C is a simple closed curve in the xy -plane, then $\oint_C \frac{2}{5}x \, dy - \frac{3}{5}y \, dx$ is the area enclosed by C .
- (v) If $\mathbf{r}(t)$ is a space curve and $s(t)$ is its arclength, then $ds/dt = |\mathbf{r}'(t)|$.
- (vi) If \mathbf{F} is a conservative vector field on all of \mathbb{R}^3 , then $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$ for any simple closed curve C .
- (vii) The directional derivative $D_{\mathbf{u}} f$ is maximized in the direction $\mathbf{u} = \nabla f / |\nabla f|$.
- (viii) If $\mathbf{F}(x, y)$ is shown in Figure (c) from Problem 8, then $\operatorname{div} \mathbf{F} = 0$ for all points (x, y) .
- (ix) If $\mathbf{F}(x, y)$ is shown in Figure (f) from Problem 8, then $\operatorname{curl} \mathbf{F} = \mathbf{0}$ for all points (x, y) .
- (x) The method of Lagrange multipliers gives the local maxima and minima of a function subject to a constraint, but not the absolute maximum and minimum of the function subject to the constraint.