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ABSTRACT. We examine the response of a soft ferromagnetic film
to an in-plane applied magnetic field by means of both theory and
experiment. In the thin-film limit, we uncover a separation of
scales in the rough energy landscape of micromagnetics: leading
order terms generate constraints which eliminate degrees of free-
dom, terms of second order in the film thickness lead to a (new)
reduced variational model, higher order terms are related to wall,
vortex, and anisotropy energies. We propose a new strategy to
compute low-energy domain patterns, which proceeds in two steps:
we determine first the magnetic charge density by solving a convex
variational problem, then we construct an associated magnetiza-
tion field using a robust numerical method. Experimental results
show good agreement with the theory. Our analysis is consistent
with prior work by van den Berg and by Bryant and Suhl, but
it goes much further; in particular it applies even for large fields
which penetrate the sample.

1. INTRODUCTION

Soft ferromagnetic films are of great interest both for applications
and as a model physical system. Their sensitive response to applied
magnetic fields makes them useful for the design of many devices, in-
cluding inductive or GMR sensors, and magnetoelectronic memory el-
ements [1]. Therefore soft thin films have been the object of much
experimental and computational study [2]. The large variety of rel-
atively simple domain patterns they display makes such films a con-
venient paradigm for analyzing the microstructural origin of magnetic
hysteresis. More generally, they provide a crucial example for studying
the response of systems evolving through the multiplicity of metastable
states resulting from a rough energy landscape [3].

Most current modeling of soft thin films is based on direct micro-
magnetic simulation [4], [5]. This is demanding due to the long-range
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nature of dipolar interactions, and to the necessity of resolving sev-
eral small length scales simultaneously. Numerical simulation is surely
the right tool for the quantitative study of hysteresis and dynamic
switching [6], [7]. However it is natural to seek a more analytical un-
derstanding of the equilibrium configurations. The origin of domain
patterns is intuitively clear: they arise through a competition between
the magnetostatic effects (which favor pole-free in-plane magnetiza-
tion) and the applied field (which tends to align the magnetization). A
two-dimensional model based on this intuition was developed by van
den Berg [8] in the absence of an applied field, and extended by Bryant
and Suhl [9] to the case of a sufficiently weak in-plane applied field. In
van den Berg’s model magnetic domain patterns are represented using
two-dimensional, unit-length, divergence-free vector fields, determined
using the method of characteristics; the caustics where characteristics
meet are domain walls. In Bryant and Suhl’s model, the presence of
a weak applied field is accounted for through an electrostatic analogy:
the “charges” associated with the magnetic domain pattern should be
such as to expel the applied field from the interior of the sample, as
occurs in an electrical conductor. The domain patterns predicted by
Bryant and Suhl have, in fact, been observed experimentally [11]. The
electrostatic analogy is restricted, however, to sufficiently small applied
fields: since the magnetization vector has a constrained magnitude, the
field generated by its divergence cannot be arbitrarily large. Therefore
Bryant and Suhl’s model breaks down at a critical field strength beyond
which the external field penetrates the sample.

This paper extends and clarifies the models described above. Our
extension is two-fold: we permit large applied fields which penetrate
the sample, and we replace the method of characteristics with a robust
numerical scheme. Our clarification is also two-fold: we identify the
regime in which these two-dimenasional models are valid and, while
providing them with a variational formulation, we explain their rela-
tion to classical micromagnetics. Indeed, the energy functional of the
dimensionally reduced model is the thin film limit (in the sense of
gamma-convergence [12]) of the three-dimensional energy functional of
micromagnetics. In this respect, our work extends previous results of
Gioia and James in this direction [13]. Finally, to assess our proposed
model, we compare its predictions to experiments on Permalloy thin
film elements with square cross-section. The agreement between theory
and experiment is remarkable, even in the field penetration regime.

At a more fundamental level, this paper is a contribution to the
study of systems governed by rough energy landscapes. At the heart of
our approach is an asymptotic analysis of the micromagnetic energy in
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the thin-film limit. This limit process reveals a hierarchical structure
in the energy, which separates into low-order terms, “essential part”,
and higher-order terms. The low-order terms lead to constraints (e.g.
the component of the magnetization along the thickness direction must
vanish), hence to the elimination of degrees of freedom. The essential
part is the term of second order in the film thickness: It leads to
a (new) reduced variational principle which sets the charge density.
Wall energies and anisotropy contribute only at higher order. The
higher-order terms are not irrelevant: they provide the energy barriers
which are the source of magnetic hysteresis. Moreover, they break the
degeneracy in the reduced theory. Our analysis indicates, however, that
in spite of the non-uniqueness of domain patterns, certain quantities
(namely, the charge density, the region of field penetration, and the
magnetization in the penetrated region) are uniquely predicted by the
reduced model and should have little or no hysteresis.

2. MICROMAGNETICS: FROM THREE TO TwO DIMENSIONS

The free-energy functional of micromagnetics in units of J2L?/2u,
is

Eym) = (kd)? /Q VmPdz+Q [ p(m)da

Qq

(2.1) + / \hd\de—Q/ Rl -mdx .
R3 Qq

Here m is the magnetization (in units of the saturation magnetization
Js), a unit vector field defined on the film Q; with cross section w
and thickness d, where all lengths are measured in units of a typical
lateral dimension L (the diameter for w a circle, the edge-length for
w a square). Moreover, £ is the ratio between exchange length Dgy,
and film thickness, where Dp, = (2u0A4/J%)%, and A is the exchange
constant; () is the quality factor measuring the strength of the magnetic
anisotropy ¢ relative to that of dipolar interactions; A4 is the stray field
in units of Js/pg, and the corresponding integral is the magnetostatic
energy; h. is the applied field in units of J;/ug, which we assume to
be uniform and parallel to the film’s cross section. In what follows, a
prime will always denote a two-dimensional field or operator.

For d < 1 a hierarchical structure emerges in the energy landscape
of (2.1), see Table 2.1, as it can be checked with direct calculations.
Variations of m of order one along the thickness direction x5 give rise to
an exchange energy per unit area (of the cross section) of order x?d. An
out—of-plane component mg of order one determines a magnetostatic
contribution per unit area of order d. The component of the in-plane
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TABLE 2.1. Scaling of various energy sources

ngs k2d
ms d
[m' - V] In(3) d?
div'm/ d?
external field energy h.d
anisotropy energy Qd
asymmetric Bloch wall K2 d?
Néel wall (In(5)) *d?
vortex In(%) k2 d

magnetization m’ orthogonal to the lateral boundary Ow of the film’s
cross section w leads to a magnetostatic contribution of order d? lné
per unit length. The same mechanism penalizes jumps [m’ - '] of the
normal component of the magnetization across a line of discontinuity of
m' with normal /. These lines of discontinuity arise by approximating
domain walls as sharp interfaces. At order d? we find the magnetostatic
energy per unit area due to surface “charges” proportional to the in-
plane divergence div'm’. Finally, the energy per unit length of a Néel or
asymmetric Bloch wall and the energy of a single vortex are indicated
in the table. In the regime

R Q 1
2.2 H=—=~1 =<1, d<r < —77,
(22) <=4 d dtn (2]
the low-order terms penalizing mg, g—g and [m' - '] become hard con-

straints, while the energetic cost of anisotropy, of the wall type of min-
imal energy!, and of vortices become higher-order terms. The energy
is thus determined, at principal order, by the competition between the
aligning effect of H! and the demagnetizing effects due to div'm/.

In view of this separation of energy scales in the regime (2.2), the
following reduced theory emerges naturally. We call an in—plane vector
field m/(z") on w “regular” if it satisfies [m' - '] = 0 across all possible
discontinuity lines and at Ow. Our reduced theory states that the
magnetization m/(z') minimizes

(2.3) E(m') :/ |Hd\2da:—2/Hé-m'da:',
R? w

'Note that (2.2) probes a range of film thicknesses over which different wall
types are to be expected, see ref. [2]. Typical values of the material parameters for
Permalloy are Q = 2.5 x 10~* and Dy, = 5nm. Thus, for a circular element with
diameter 1 ym and thickness 10 nm we have d = 0.01 and k¥ = 0.5.
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where Hy(z) = —VU is determined by
VU = 0 in IR? outside of w,

[a—U] = div'm' onw,
6333

among all regular in-plane vector fields m’ of unit length
(2.4) Im'| =1 inw.

Our formula for the induced field Hy is naturally consistent with that
commonly used for two-dimensional micromagnetic simulations [15]. In
fact, the argument in support of our reduced theory is not only based
on heuristics. We have actually proved gamma-convergence of the en-
ergy functional (2.1) to (2.3), but the technical (and rather lengthy)
arguments which are required to establish this result are beyond the
scope of the present paper, and will be published elsewhere [14].

We now make two crucial observations. (i): the functional E de-
pends on m/ only via the surface charge 0 = —div'm/, and it is strictly
convex in 0. Indeed, [ R |Hy4|? dz is a quadratic functional of o and an
integration by parts shows that [ H]-m'dz' is a linear functional of
o. (ii): for any regular my of at most unit length, that is

(2.5) Img| <1 inw,

there exist many regular m’ of unit length with the same surface charge:
div'm/ = div'mj. Indeed, we may write m’ = V-t + m{, where V¢ =
(=0 /0xq, 01 /0x1) and the continuous function 1 (z’) on w solves the
boundary value problem

(2.6) VX +my| = 1 inw,
(2.7) ¥ = 0 on Jdw.

One can generate many solutions by imposing the additional condition
1) = 0 on an arbitrary curve contained in w.

These observations have two important consequences. First, the min-
imizer of the reduced energy E is not uniquely determined. Indeed,
according to (i), E depends only on the surface charge, and according
to (ii), a regular in—plane vector field of unit length is not uniquely
determined by its surface charge. The second consequence is that the
surface charge and thus the stray field are uniquely determined. In-
deed, according to (i), E is a strictly convex function of the surface
charge, and according to (ii), the set of surface charges which can be
generated by regular in—plane vector fields of unit length is convex.
(This is true despite the fact that the set of regular in—plane vector
fields with unit length is not convex.)
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Any minimizer m’ of (2.3,2.4) satisfies the Euler-Lagrange equation
(2.8) H,+H,=Xm' inw,

where A\(z') is the Lagrange multiplier associated with the pointwise
constraint (2.4). Since H, is uniquely determined, the region {H} +
H! # 0} of w where the external field is not expelled from the sample is
uniquely determined. Within this penetrated region, m' is also uniquely
determined in view of (2.8).

There exists a finite critical field strength H.;, in the following sense:
when the applied field is subcritical, A = 0 and the field is completely
expelled from the sample, whereas when it is supercritical A is nonzero
somewhere and the field penetrates in that part of the sample. The
critical field strength depends on the geometry of w — for a circular
disk of diameter one, its value is one.

3. COMPUTATION OF DOMAIN PATTERNS WITHIN THE REDUCED
THEORY

To derive quantitative predictions from our reduced model (2.3,2.4),
we proceed in two steps. The first step minimizes (2.3) among all
regular in—plane vector fields my, of length less than or equal to 1. Recall
that replacing (2.4) by (2.5) does not change the minimum energy;
therefore the m{ obtained this way has the correct reduced energy,
though it typically violates (2.4). The second step postprocesses my by
solving (2.6,2.7) to obtain another minimizer m' of unit length. This
m' is the desired magnetization.

The first step is a convex (though degenerate) variational problem.
We solve it using an interior point method [16]. More in detail, the
convex constraint is enforced by adding to the physical energy F a
small multiple ¢ of a self-concordant barrier B. The unique stationary
point of (the strictly convex) E +t¢B is computed by Newton’s method;
it serves as an initial guess for the minimizer of E + ¢'B, where t' < t.
The parameter ¢ is then slowly decreased by multiplicative increments.
Within Newton’s method, the Hessian of E + tB is inverted by a pre-
conditioned conjugate gradient method, where the magnetostatic part
of the Hessian is evaluated with the help of Fast Fourier Transform.

For the second step, we recall that the solution of (2.6,2.7) is not
unique. However there is a special solution 7, known as the “viscosity
solution”, which has special mathematical properties [17]. It is robust
and can be computed efficiently using the “level set method” [18]. This
is what we compute.

Our numerical scheme selects — automatically and robustly — one
of the many minimizers m'. The selection principle implicit in this
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scheme is the same as the one proposed by Bryant and Suhl. It ap-
pears to pick a minimizer with as few walls as possible. Thus it is not
unlike the more physical selection mechanism of minimizing wall en-
ergy, represented as a higher-order correction to (2.3) [19], [20]. More
complex configurations of (presumably) higher energy (in particular,
remanent states showing more intricate wall structures) can also be
generated, easily but not automatically, by setting ¥» = 0 on curves
contained in w.

Figure 3.1 shows the predictions of our numerical scheme for a square
film of edge-length one, subject to a monotonically increasing field
applied along the diagonal. This rather special geometry was cho-
sen to guarantee that nontrivial domain patterns could persist beyond
field penetration, as illustrated by the 90-degree domain wall emerg-
ing from the bottom right corner of the sample. To check our predic-
tions, we have observed the response of two ac-demagnetized Permalloy
(Nig;Feqg, J; = 1.0 T) square samples of edge lengths L = 30 and 60
pm and thicknesses D = 40 and 230 nm, respectively, in a digitally
enhanced Kerr microscope. The observed domain patterns are given
in Figures 3.2, 3.3 where the field intensity h., measured in Tesla, is
scaled according to

L h,
(3.1) H= DI

In comparing Figures 3.1, 3.2, and 3.3 one may speculate that the
small lag in the strength of the applied field exhibited by the thinner
samples may be due the fact that, for these films, the walls are of
Néel type and they are repelled by the lateral boundary (an ln(é) d?
effect, according to Table 2.1). This effect could be captured by an
enhanced two-dimensional model in which higher-order terms in the
film thickness are taken into account.

Figure 3.4 examines more closely the predictions of our theory for
|H!| near H..;. We have superimposed on each gray-scale plot the level
curves of the potential v of the penetrated field, defined by —Vv = H)+
H! . Regions where the field lines concentrate are regions where Vv # 0,
i.e., where the external field has penetrated the sample. Within them,
(2.8) implies that m' is parallel to Vv . Our theory predicts that m’
can have no walls in the penetrated region. The pictures confirm this,
and show quite clearly that two apparently independent phenomena —
the expulsion of the domain walls from the interior of the sample and
the penetration of the external field — are in fact two manifestations of
the same event.
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FIGURE 3.1. Predictions of the theory: gray-scale plots
of the vertical component of magnetization.

4. DISCUSSION

In summary, our model describes the response of a soft ferromag-
netic thin film to an applied magnetic field. It determines the mi-
cromagnetic energy to principal order, and certain associated physical
quantities that should have little or no hysteresis — the charge density,
the region of field penetration, and the magnetization in the penetrated
region. In addition our scheme provides a specific magnetization pat-
tern which is consistent with experimental observation and may well
be the ground state. Of course, the magnetization of a soft thin film
is not uniquely determined by the applied field: the multiplicity of
metastable states is a primary source of hysteresis. Our reduced model
simplifies the energy landscape: among the many micromagnetic equi-
libria, only those with low energy survive, and they can be computed
effectively. Our approach does not yet provide a model for hysteresis
or a classification of stable structures, but it does suggest a strategy
of attack, namely, through the analysis of higher-order terms in the
micromagnetic energy.
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FIGURE 3.2. Permalloy films: L = 60 ym, D = 230 nm.
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