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Abstract

We examine the singularly perturbed variational problem E�( ) =R
��1(1�jr j2)2+ �jrr j2 in the plane. As �! 0 this functional fa-

vors jr j = 1 and penalizes singularities where jrr j concentrates.
Our main result is a compactness theorem: if E�( �) is uniformly

bounded then r � is compact in L2. Thus, in the limit � ! 0  

solves the eikonal equation jr j = 1 almost everywhere. Our analysis

uses \entropy relations" and the \div-curl lemma," adopting Tartar's
approach to the interaction of linear di�erential equations and nonlin-

ear algebraic relations.
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1 Motivation, statement of the result and idea

of the proof

We consider the singularly perturbed functional

E�( ) = �

Z


jrr j2 +

1

�

Z


(1� jr j2)2 (1)

as � # 0. It arises as a model problem in connection with several physical
applications, including smectic liquid crystals (see Aviles & Giga [2]), thin
�lm blisters (see Ortiz & Gioia [8, 17]), and convective pattern formation (see
Ercolani et. al [7]). Physically (1) can be viewed as a simple Landau theory,
in which the order parameter is a curl-free vector �eld r which prefers to
be of norm 1.
The functional analysis of (1) is still poorly understood, despite consider-
able attention. A natural goal is to �nd the \asymptotic energy" as � # 0,
represented by the �{limit of E� (see for instance [6]). A formula for this
asymptotic energy was conjectured by Aviles and Giga [2]: it minimizes a
certain \fold energy," as  ranges over almost-everywhere solutions of the
eikonal equation jr j = 1. To con�rm their conjecture, one needs to show
(informally speaking) that:

(a) solutions of the eikonal equation are the appropriate admissible set;

(b) the proposed formula for the fold energy is correct, i.e. energetically
optimal folds are \locally one-dimensional;"

(c) the asymptotic energy lives only on the folds, i.e. lower-dimensional
singularities carry no energy.

All the analysis to date has been restricted to the case when space is two-
dimensional. Point (a) is demonstrated in the present paper. Point (b) is
substantially con�rmed by the work of Jin & Kohn [9, 10] and Aviles &
Giga [3]. Point (c) is basically open. After this work was done but before
it was submitted for publication we learned of related progress by Ambrosio
et al. [1]. They also demonstrate (a), using a method entirely di�erent from
ours, and they show by example that the admissible  's can be unexpectedly
complex.
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Our functional (1) is an obvious generalization to gradient �elds of the scalar
problem considered by Modica & Mortola (in [13], [14] and [12])

~E�(u) = �

Z


jruj2 +

1

�

Z


(1� u2)2: (2)

Let us brie
y review the compactness result associated with (2). The precise
statement is: if, for a fu�g�#0, the energies f ~E�(u�)g�#0 are uniformly bounded,
then fu�g is relatively compact in L

2(
). The essence of the argument is this
estimate for v� = u� (1�

1
3
u2�)Z



jrv�j =

Z


j(1� u2�)ru�j

�
�Z



jru�j

2
� 1

2

�Z


(1� u2�)

2
� 1

2

�
�

2

Z


jru�j

2 +
1

2 �

Z


(1� u2�)

2 = E�(u�): (3)

The estimate implies the boundedness of frv�g�#0 in L
1(
), which provides

suÆcient compactness. It is obvious that the above argument does not gen-
eralize to (1): There is no equivalent to (3), since there is no transformation
� such that D[�(r �)] = (1�jr �j

2) D2 �. The di�erence may also be seen
as follows: In case of (2), the favored values of u form a discrete set f�1; 1g.
In case of (1), the favored values of f = r form a continuum fjzj2 = 1g.
Hence in case of (1), the additional information that r�f = 0 is essential for
compactness. We will have to investigate the combined e�ect of the linear
di�erential equation r�f = 0 and the nonlinear relation jf j2 = 1.

Proposition 1 Let 
 � IR2 open and bounded. Let the sequences f��g�"1 �
(0;1) and f �g�"1 � H2(
) be such that

��
�"1
�! 0 and fE��( �)g�"1 is bounded:

Then
fr �g�"1 � L2(
) is relatively compact:

Actually we prove a bit more than Proposition 1. To state the stronger re-
sult, we prefer to work with the divergence-free vector �elds m� = Rr � ,
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where R denotes rotation by �
2
, that is R

�
z1
z2

�
=
�
�z2
z1

�
. This shift of perspec-

tive entails no loss of generality (our method seems intrinsically limited to
two space dimensions). Moreover it highlights the analogy between (1) and
the micromagnetic energy of an isotropic thin �lm, where m is only approx-
imately divergence-free, but jmj = 1 exactly. In truth, we �rst found the
arguments behind Proposition 2 while exploring the micromagnetics of thin
�lms. This paper focuses on (1) instead of micromagnetics, because that is
the more familiar and widely-studied problem. Our stronger result is:

Proposition 2 Let 
 � IR2 open and bounded. Let the sequence fm�g�"1 �
H1(
) be such that

r �m� = 0 a. e. in 
; (4)

k1� jm�j
2kL2(
)

�"1
�! 0; (5)n

krm�kL2(
) k1� jm�j
2kL2(
)

o
�"1

is bounded: (6)

Then
fm�g�"1 � L2(
) is relatively compact: (7)

The fact that this is a non trivial issue becomes apparent by the following
argument: Assume that (7) is true. Then there exists an m 2 L2(
) such
that for a subsequence

m�
�"1
�! m in L2(
):

Property (4) is conserved in the limit in a weak sense:

r �m = 0 in a distributional sense on 
; (8)

whereas (5) sharpens into

jmj2 = 1 a. e. in 
: (9)

On the level of L2(
){functions, the combination of the linear partial dif-
ferential equation (8) and the nonlinear relation (9) is not enough to ensure
compactness in L2(
). On the level of di�erentiable functions, it is very rigid.
(This can be easily seen by going back to the original description m = Rr 
in which (8) is automatically ful�lled and (9) turns into the eikonal equation
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jr j2 = 1.) Hence in our compactness proof, we will have to combine the
linear partial di�erential equation (4), the increasing penalization of jmj2 6= 1
through (5), and the (fading) control of Dm through (6).

Let us sketch the basic idea of the proof of Proposition 2. For this, we
reconsider an m which satis�es both the linear partial di�erential equation
(8) and the nonlinear relation (9). Because of (9), we can write m =

�
cos �
sin �

�
with a function � so that (8) turns into

@1(cos �) + @2(sin �) = 0: (10)

It is enlightening to think of (10) as a scalar conservation law for the quantity
s ' cos � which depends on time t ' x1 and a single spatial variable y ' x2:

@ts + @yf(s) = 0: (11)

As a scalar conservation law (11), (10) would be highly nonlinear. As can be
seen by the method of characteristics, (11) with a nonlinear 
ux function f
generically does not admit di�erentiable solutions to the Cauchy problem. On
the other hand, there generically are in�nitely many distributional solutions
to the Cauchy problem. The physically motivated notion of entropy solution
has been introduced; the Cauchy problem is well{posed in this framework,
see for instance [11].

What is the notion of an entropy solution? If the pair of nonlinear functions
(�; q) satis�es q0 = �0f 0 (a so{called entropy entropy{
ux pair) and if s is a
di�erentiable solution of (11), then

@t�(s) + @yq(s) = 0: (12)

But if f is nonlinear and s is only a distributional solution of (11), then (12) is
generically not satis�ed | even in a distributional sense. An entropy solution
s of (11) is de�ned as a distributional solution of (11) with the property that

@t�(s) + @yq(s) � 0

in a distributional sense for all entropy entropy{
ux pairs (�; q) such that �
is convex. Even if � is not convex, we have for an entropy solution that

@t�(s) + @yq(s) is a measure:
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By a lemma of Murat [16], this implies that if fs�g�"1 is a sequence of
uniformly bounded entropy solutions, then

@t�(s�) + @yq(s�) is compact in H�1:

The latter allows for a judicious application of Murat and Tartar's div{curl
lemma (a special case of compensated compactness, see [15] and [18]). Tartar
uses this to derive restrictions on the Young measure generated by fm�g�"1
[18]. This allows him to conclude that the set of uniformly bounded entropy
solutions is compact, provided f is suÆciently nonlinear. In fact, the scope of
his method is more general: It explores how the combination of linear partial
di�erential equations (like (8)) and nonlinear relations (like (9)) restricts and
may rule out oscillations. The general tool{box Tartar assembled is perfectly
suited for our situation.

In the �rst part of Section 2 (Lemma 1 and Lemma 2), we will identify all
(nonlinear) functions � of m with the property that �(m) satis�es a certain
linear partial di�erential equation, provided m satis�es the linear partial
di�erential equation (8) and the nonlinear relation (9). More precisely, we
will identify all � such that

if m is di�erentiable with r �m = 0 and jmj2 = 1;

then r � [�(m)] = 0:

This is in the spirit of Tartar and mimics the tool of entropy and entropy{
ux
pairs (�; q). In the second part of Section 2 (Lemma 5), we will show that
the class of entropies is rich enough for our purposes. This doesn't come as
a surprise, since the set of all entropy and entropy{
ux pairs (�; q) is rich
enough for a scalar conservation law in one space dimension (11). In the �rst
part of Section 3, we will show that the control expressed in (6) is strong
enough to ensure that for our sequence fm�g�"1

r � [�(m�)] is compact in H�1 for above �0s:

Then, in the second part of Section 3, we will apply Tartar's program.

2 Entropies

De�nition 1 A � 2 C1
0 (IR2)2 is called entropy if

z �D�(z)Rz = 0 for all z and �(0) = 0; D�(0) = 0; (13)
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where D�i;j =
@�i

@xj
denotes the Jacobian of � and R the rotation by �

2
, that

is R
�
z1
z2

�
=
�
�z2
z1

�
.

Lemma 1 Let � 2 C1
0 (IR2)2 be an entropy. Then there exists a 	 2

C1
0 (IR2)2 such that

D�(z) + 2	(z)
 z is isotropic for all z: (14)

Proof of Lemma 1. Componentwise, (14) is equivalent to the three equations

�1;1(z) + 2	1(z) z1 = �2;2(z) + 2	2(z) z2 and (15)

�1;2(z) + 2	1(z) z2 = 0; �2;1(z) + 2	2(z) z1 = 0: (16)

By continuity, (15) is equivalent to (15) multiplied with z1 z2, that is

z1 z2�1;1(z) + 2 z21 z2	1(z) = z1 z2�2;2(z) + 2 z1 z
2
2 	2(z):

Hence the conjunction of (15) and (16) is equivalent to the conjunction of

z1 z2�1;1(z)� z21 �1;2(z) = z1 z2�2;2(z)� z22 �2;1(z) (17)

and (16). But (17) is just (13) written in a componentwise fashion and (16)
can be satis�ed by choosing

	1(z) = �
1

2 z2
�1;2(z) and 	2(z) = �

1

2 z1
�2;1(z):

We observe that by de�nition we have D�(0) = 0, which ensures 	 2
C1
0 (IR2)2.

Lemma 2 Let � 2 C1
0 (IR2)2 and 	 2 C1

0 (IR2)2 satisfy (14). Let m 2
H1(
)2 satisfy

r �m = 0 a. e. in 
:

Then
r � [�(m)] = 	(m) � r(1� jmj2) a. e. in 
:
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Proof of Lemma 2. We have a. e. in 


r � [�(m)] = trD[�(m)] = tr(D�(m) Dm) = tr(DmD�(m))

and

	(m) � r(1� jmj2) = �2m �Dm	(m) = �tr (Dm (2	(m)
m)) ;

so that

r � [�(m)]�	(m) � r(1� jmj2) = tr (Dm (D�(m) + 2	(m)
m)) :

By assumption for a. e. x 2 
,

tr(Dm(x)) = (r �m)(x) = 0 ;

D�(m(x)) + 2	(m(x))
m(x) is isotropic

and therefore

tr (Dm(x) (D�(m(x)) + 2	(m(x))
m(x))) = 0:

Lemma 3 There is a one{to{one correspondence between entropies � 2
C1
0 (IR2)2 and functions ' 2 C1

0 (IR2) with '(0) = 0 via

�(z) = '(z) z +r'(z) � RzRz: (18)

Proof of Lemma 3. Let ' 2 C1
0 (IR2) with '(0) = 0 be given and � de�ned

via (18). Obviously, �(0) = 0. We have

D�(z) = z 
r'(z) + '(z) id

+ Rz 
 (D2'(z) Rz � Rr'(z)) +r'(z) � RzR

and therefore D�(0) = 0 and

z �D�(z) Rz = jzj2r'(z) � Rz +r'(z) �Rz z �RRz = 0:

On the other hand, let � 2 C1
0 (IR2)2 be an entropy. Since �(0) = 0 and

D�(0) = 0,
jzj2 '(z) = �(z) � z (19)
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de�nes a ' 2 C1
0 (IR2) with '(0) = 0. Di�erentiating the identity (19) in the

direction Rz yields

jzj2r'(z) � Rz = z �D�(z) � Rz + �(z) �Rz
(13)
= �(z) �Rz: (20)

Hence

jzj2�(z) = �(z) � z z + �(z) �Rz Rz
(19;20)
= jzj2 '(z) z + jzj2r'(z) � RzRz

= jzj2 ('(z) z +r'(z) � RzRz) :

By continuity, this implies (18).

Lemma 4 Fix an e 2 S1. Then

�(z) =

(
jzj2 e for z � e > 0
0 for z � e � 0

)
(21)

is a generalized entropy in the sense that there exists a sequence f��g�"1 of
entropies in C1

0 (IR2)2 s. t.

f��(z)g�"1 is bounded uniformly for bounded z; (22)

��(z)
�"1
�! �(z) for all z: (23)

Proof of Lemma 4. Consider the function '

'(z) =

(
z � e for z � e > 0
0 for z � e � 0

)

and the map � given by

�(z) =

(
e for z � e > 0
0 for z � e � 0

)
:

Observe that � is the gradient of ' wherever the latter is di�erentiable.
Obviously, there exists a sequence f'�g�"1 in C1

0 (IR2) s. t.

f('�(z);r'�(z))g�"1 is bounded uniformly for bounded z; (24)

('�(z);r'�(z))
�"1
�! ('(z); �(z)) for all z: (25)
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According to Lemma 3,

��(z) = '�(z) z +r'�(z) �Rz Rz

is an entropy. (24) implies (22) and according to (25),

��(z)
�"1
�! '(z) z + �(z) � RzRz

=

(
z � e z + e � RzRz for z � e > 0

0 for z � e � 0

)

=

(
jzj2 e for z � e > 0
0 for z � e � 0

)
;

which turns into (23).

Lemma 5 Let � be a probability measure on IR2 supported on S1. Suppose
it has the propertyZ

� �R~� d� =
Z
� d� �

Z
R~� d� for all entropies �; ~�:

Then � is a Dirac measure.

Proof of Lemma 5. According to Lemma 4, we are allowed to use the gener-
alized entropies of the form (21). As � is supported on S1, this yields

e �R~e �(fz � e > 0g \ fz � ~e > 0g) = e � R~e �(fz � e > 0g)�(fz � ~e > 0g)

for all e; ~e 2 S1

or
�(fz � e > 0g \ fz � ~e > 0g) = �(fz � e > 0g)�(fz � ~e > 0g)

for all ~e 2 S1 � fe;�eg and all e 2 S1:

Sending ~e to e yields

�(fz � e > 0g) � �(fz � e > 0g)�(fz � e � 0g) for all e 2 S1

or

( �(fz � e > 0g) = 0 or �(fz � e � 0g) � 1 ) for all e 2 S1:

As � is a probability measure, this implies

( supp � � fz � e � 0g or supp � � fz � e � 0g ) for all e 2 S1:

As the measure � is concentrated on S1, this forces it to be concentrated on
a single point on S1.
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3 Compensated compactness and Young mea-

sures

Proof of the Proposition. We may focus on Proposition 2, since as explained
in Section 1 it implies Proposition 1.
The �rst step is to show that for any entropy � 2 C1

0 (IR2)2,

fr � [�(m�)]g�"1 is compact in H�1(
): (26)

According to Lemma 1, Lemma 2 and (4), there exists a 	 2 C1
0 (IR2)2 such

that
r � [�(m�)] = 	(m�) � r(1� jm�j

2) a. e. in 
: (27)

Since 	 is bounded and according to (5), f(1� jm�j
2)	(m�)g�"1 converges

to zero in L2(
). As a consequence, fr � [(1� jm�j
2)	(m�)]g�"1 converges

to zero in H�1(
). Therefore, (26) would follow from

fr � [�(m�)� (1� jm�j
2)	(m�)]g�"1 is compact in H�1(
); (28)

which we show now: Thanks to (27), we have

r� [�(m�)� (1�jm�j
2)	(m�)] = r� [	(m�)] (1�jm�j

2) a. e. in 
: (29)

We observe that since � and 	 are bounded and according to (5),

f�(m�)� (1� jm�j
2)	(m�)g�"1 is uniformly integrable: (30)

Since D	 is bounded and according to (6),

fr � [	(m�)] (1� jm�j
2)g�"1 is bounded in L1(
): (31)

A lemma by Murat [16] now states that thanks to (30) and (31), the identity
(29) implies (28). This establishes the proof of (26).

In the second step, we apply the tools of Young measures and compensated
compactness in the spirit of Tartar [18]. According to L. C. Young's theory
of generalized functions (also called Young measures), there exists a non
negative Borel measure �x such that for a subsequenceZ




Z
�(z; x) d�x(z) dx = lim

�"1

Z


�(m�(x); x) dx (32)
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for all � 2 C1
0 (IR2 � 
);

with the understanding that the function 
 3 x 7!
R
�(z; x) d�x(z) is inte-

grable for any � 2 C1
0 (IR2 � 
) (see [18], [4], [5]). The family f�xgx2
 is

called the Young measure associated to the subsequence fm�g�"1. According
to (5), fjm�j

2g�"1 is uniformly integrable. Therefore, (32) can be improved
to Z




Z
�(z; x) d�x(z) dx = lim

�"1

Z


�(m�(x); x) dx (33)

for all � 2 C1(IR2 � IR2) with sup
(z;x)2IR2�IR2

j�(z; x)j

1 + jzj2
<1:

By choosing � = �(x) in (33), we see thatZ
d�x = 1 for a. e. x 2 
: (34)

Another generalization of (32) which comes for free isZ



Z
�(z; x) d�(z) dx � lim sup

�"1

Z


�(m�(x); x) dx (35)

for all non negative � 2 C1(IR2 � IR2):

By choosing �(z) = (1� jzj2)2 in (35), we see that (5) implies

supp�x � S1 for a. e. x 2 
: (36)

Let �; ~� be two entropies. According to our �rst step,

fr � [�(m�)];r�[R~�(m�)] = r � [~�(m�)]g�"1 are compact in H�1(
):

Therefore by the div{curl Lemma of Murat and Tartar ([15] and [18]) the
weak{* limit of the product of �(m�) and R~�(m�) in L

1(
) is the product
of the weak limits in L2(
) of �(m�) resp. R~�(m�). According to (32), these
weak limits can be expressed in terms of the Young measure f�xgx2
; hence
on the level of the Young measure, we obtain the commutation relationZ

� � R~� d�x =
�Z

� d�x

�
�
�Z

R~� d�x

�
for a. e. x 2 
:

Because of this and (34), (36), we may apply Lemma 5 to the e�ect of

�x is a Dirac measure for a. e. x 2 
:
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This entailsZ
jzj2 d�x(z) = jm(x)j2 where m(x) =

Z
z d�x(z) for all x 2 
;

(37)
where according to (33), m is the weak-* limit of fm�g�"1 in L1(
). As a
consequence of (5), fjm�j

2g�"1 is uniformly integrable, so that m is the weak
limit of fm�g�"1 in L2(
). According to (37) and (33) for �(z; x) = jzj2, we
have

kmkL2(
) = lim
�"1

km�kL2(
):

As it is well{known, convergence of the norm strengthens weak convergence
to strong convergence in L2(
), so that

lim
�"1

km� �mkL2(
) = 0:
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