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Abstract

N�eel walls and cross{tie walls are two structures commonly seen in ferro-

magnetic thin �lms. They are interesting because their internal length scales

are not determined by dimensional analysis alone. This paper studies (a)

the repulsive interaction of one{dimensional N�eel walls; and (b) the inter-

nal length scale of the cross{tie wall. Our analysis of (a) is mathematically

rigorous; it provides, roughly speaking, the �rst two terms of an asymptotic

expansion for the energy of a pair of interacting walls. Our analysis of (b)

is heuristic, since it rests on an analogy between the cross{tie wall and an

ensemble of N�eel walls. This analogy, combined with our results on N�eel walls

and a judicous choice of parameter regime, yields a speci�c prediction for the

internal length scale of a cross{tie wall. This prediction is consistent with the

experimentally{observed trends.
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1 Introduction

The N�eel wall is a dominant wall type in soft thin magnetic �lms. Unlike most tran-
sition layers in materials science, N�eel walls have extremely slowly (logarithmically)
decaying tails. These tails are con�ned only by anisotropy, by the sample edges,
or by the tails of neighboring N�eel walls. If the con�ning mechanism comes from
the tails of neighboring walls (which cannot unwind and thus annihilate themselves)
then there is a strong repulsive interaction between the walls.

The cross{tie wall is another typical pattern seen in soft thin �lms. It resembles
an ensemble of N�eel walls, with a characteristic pattern and a well{de�ned internal
length scale wcross. Experimentally wcross is known to decrease as the �lm thickness
increases. It also decreases as the material anisotropy increases. There is however
no accepted theory predicting the value of wcross or even the experimentally observed
trends.

The origin of this paper is the observation that these two problems are related.
Indeed, if the cross{tie wall resembles an ensemble of N�eel walls, then its internal
length scale should be determined by the repulsive interaction of N�eel wall tails. We
are thus led to explore both (a) the interaction of N�eel walls, and (b) the internal
length scale of a cross{tie wall.

The complexity and multiscale character of thin{�lm micromagnetics makes it par-
ticularly fruitful to consider these topics simultaneously. There are three distinct
length scales | the exchange length d, the �lm thickness t, and the wall spacing w.
So there are two nondimensional parameters, and a multitude of possible regimes.
The application to cross{tie walls will guide our attention to a speci�c parameter
regime, namely

d� w and ln
w

d
� t

d
� w

d
;

as the one that is relevant to cross{tie walls.

This paper presents a mixture of rigorous and heuristic argument. Our results on
one{dimensional N�eel walls are fully rigorous. Our deductions concerning cross{
tie walls are heuristic, since they depend on the caricature of a cross{tie wall as
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an ensemble of N�eel walls. Such a mixture of rigor and heuristics may be unusual,
however it seems to us quite natural. The heuristic arguments identify the \essential
physics" determining the length scale of a cross{tie wall; the rigorous arguments
analyse the consequences of the essential physics, in the simplest possible setting.

The analysis of N�eel walls has interest far beyond the speci�c application emphasized
here, to cross{tie walls. Indeed, the interaction of such walls with one another or
with the boundary of a sample creates signi�cant energy barriers. This e�ect grows
stronger with decreasing �lm thickness t. It can be responsible for the inaccessibility
of energetically favorable states, and thus is one source of magnetic hysteresis in
soft thin ferromagnetic �lms. An example of such hysteresis | involving repulsive
interaction of a wall with a sample boundary | is discussed in [3].

The analysis of one{dimensional N�eel walls also has considerable mathematical in-
terest. The problem is challenging because it amounts to a nonlocal, nonconvex
variational problem with a small parameter. Our approach is to prove matching up-
per and lower bounds on the minimum energy. Finding a good upper bound is more
or less routine: it suÆces to minimize the energy within a suitable ansatz. Finding
a matching lower bound is much less routine; it is the heart of our mathematical
achievement.

The rest of this introduction summarizes brie
y the structure of the paper. Section 2
reviews the basic micromagnetic model, �rst discussing the fully three{dimensional
problem (Subsection 2.1), then making the reduction to magnetization independent
of x3 (Subsection 2.2).

Section 3 introduces N�eel walls and cross{tie walls, and discusses the relation be-
tween them. We start, in Subsection 3.1, with the de�nition of a one{dimensional
N�eel wall. Then, in Subsection 3.2, we discuss how to quantify the repulsion between
N�eel walls; in particular, we de�ne the repulsive force �(d; t; w) between winding N�eel
walls at distance w. Then we turn, in Subsection 3.3, to cross{tie walls, reviewing
their basic features and explaining the relevance of �. We show, in particular, that
to account for the experimentally{observed trends, � should have certain scaling
behavior in w and t (mainly: � should grow sublinearly in t).

Section 4 formulates and discusses our rigorous results on one{dimensional N�eel
walls. The subtlety of this problem arises because the magnetostatic term displays
a cross{over between two homogeneous expressions, associated with the thick{�lm
(t=w ! 1) and thin{�lm (t=w ! 0) limits respectively. Subsection 4.1 considers
the \thick{�lm regime," i.e. the variational problem obtained by replacing the mag-
netostatic term with its limiting behavior as t=w!1. Subsection 4.2 considers the
opposite \thin{�lm regime," obtained by replacing the magnetostatic term with its
limiting expression as t=w ! 0. As we shall see, neither limiting regime gives the
desired behavior for �! Therefore in Subsection 4.3 we consider the original varia-
tional problem, with the full magnetostatic term, and we identify an \intermediate
regime" in which � does indeed have the expected behavior.
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Section 5 contains the proofs of our results on one{dimensional N�eel walls. The
thick{�lm regime, analyzed in Subsection 5.1, is relatively easy. The thin{�lm
regime, analyzed in Subsection 5.2, is relatively long and technical. Readers pri-
marily interested in cross{tie walls may however skip Subsection 5.2, proceeding
directly to Subsection 5.3. It gives the proof of our main result, Theorem 1, evalu-
ating the optimal energy in the intermediate regime associated with cross{tie walls.

2 Ferromagnetic thin �lms

2.1 Three dimensional micromagnetics

The micromagnetic model states that the experimentally observed ground state for
the magnetization m is a minimizer of the following variational problem.

We consider a ferromagnetic sample in form of a �lm of thickness t in x3{direction
and of in�nite lateral size, i. e.

IR2 � (� t
2
;
t

2
):

We call a magnetizationm: IR2�(� t
2
; t
2
)! IR3 admissible if it has unity spontaneous

magnetization

jmj2 = 1 in IR2 � (� t
2
;
t

2
) (1)

and is periodic in x1 and x2{directions with period 2w

m(x1 + 2w; x2; x3) = m(x1; x2; x3);

m(x1; x2 + 2w; x3) = m(x1; x2; x3):

The motivation for the periodicity assumption will be given in Subsection 3.2.

The micromagnetic energy per (lateral) periodic cell is given by

E3d(m) = d2
Z
(�w;w)2�(� t

2
; t
2
)
jrmj2 dx+

Z
(�w;w)2�IR

jruj2 dx

+ Q
Z
(�w;w)2�(� t

2
; t
2
)
(m2

1 +m2
3) dx; (2)

where the potential u, which is supposed to inherit the symmetries of m, i. e.

u(x1 + 2w; x2; x3) = u(x1; x2; x3);

u(x1; x2 + 2w; x3) = u(x1; x2; x3);

is determined by the static Maxwell equations, which we formulate variationally:

Z
IR3
ru � r� dx =

Z
IR2�(� t

2
; t
2
)
m � r� dx for all � 2 C10 (IR3): (3)
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The �rst term in (2) is the so{called exchange energy, the second term is the energy
of the stray �eld Hstr = �ru. The third term comes from crystalline anisotropy
which favors a certain magnetization axis, say, the m2{axis. The nondimensional
parameter Q is called the quality factor.

The classical formulation of (3) is

r2u =

( r �m in IR2 � (� t
2
; t
2
)

0 in IR2 � [(�1;� t
2
) [ ( t

2
;+1)]

)

[u] = 0 and
h
@u
@x3

i
= �m3 on IR2 � f� t

2
g

9>>=
>>; ; (4)

where [�] denotes the jump of quantity � across the boundary of the sample. We
gather from (4) that there are two sources of stray �eld. By electrostatic analogy,
one speaks of volume and surface \charges":

volume charge density: �r �m in IR2 � (� t
2
; t
2
);

surface charge density: �m3 on IR2 � f� t
2
g:

This model is already partially non{dimensionalized: The magnetization m, the
�eld Hstr = �ru, and the energy density are dimensionless. However, length is
still dimensional. In fact, there are four length scales: two intrinsic scales (i.e. only
depending on the material) and two extrinsic scales (i.e. only depending on the
sample geometry):

intrinsic scales: d and d=Q
1
2 ;

extrinsic scales: t and w:
(5)

The functional (2) is positive quadratic. It is the constraint (1) which makes the
variational problem a nonconvex one. The magnetostatic energy in (2) makes it a
nonlocal variational problem in m, since the energy density depends in a nonlocal
way on the order parameter m, namely through the equation (3) which determines
the potential u. The multiscale nature (5) of the variational problem, together with
its nonconvexity and nonlocality, leads to a rich behavior and pattern formation on
intermediate scales.

2.2 Two{dimensional reduction

In suÆciently thin �lms, it seems reasonable to assume that the magnetization is
essentially independent of the thickness direction x3:

m = m(x0); (6)

where throughout the text, the prime indicates the in{plane components 1 and 2.
The right measure of �lm thickness is the ratio t

d
. In fact, (6) approximately holds for

not too thick �lms, up to t
d
� 20 for Permalloy (Q = 0:00025), see [7, Fig.3.79]. For

thicker �lms, a wall type which violates (6) is observed. This so{called asymmetric
Bloch wall is nicely explained in [7, 3.6.4(D)] but will not be treated here.
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For magnetizations with (6), the penalization of volume charges and surface charges

volume charge density: �r0 �m0 in IR2 � (� t
2
; t
2
);

surface charge density: �m3 on IR2 � f� t
2
g

separates. This can be best seen by passing to Fourier series of the (�w;w)2{periodic
vector �eld m: IR2 ! IR3, i. e.

mj;n0 =
1

2w

Z
(�w;w)2

ei �
n
0

w
�x0mj(x

0) dx0 for n0 2 ZZ2:

We write m0
n0 = (m1;n0 ; m2;n0). Indeed, we have

Z
(�w;w)2�IR

jruj2 dx = t
X
n0

f

 
� jn0j t
2w

! ����� n
0

jn0j �m
0
n0

�����
2

+ t
X
n0

g

 
� jn0j t
2w

!
jm3;n0j2;

where the Fourier multipliers are given by

g(z) =
sinh(z)

z exp(z)
and f(z) = 1� g(z): (7)

This Fourier representation of the stray �eld energy is obtained as follows: The
Fourier transform of (4) in the horizontal variables yields an ordinary di�erential
equation in x3 with �

0 as parameter and with piecewise constant r. h. s. . This ode
can be solved explicitly. The formula then follows from Plancherel's identity in the
horizontal variables. We observe that the Fourier multipliers display a cross{over:

f(z) �
(
z for z � 1
1 for z � 1

)
and g(z) �

(
1 for z � 1
1
2 z

for z � 1

)
: (8)

Hence the way charge densities are penalized depends on the characteristic length
scale ` over which they vary. In terms of the length scale `, this cross{over is of the
order of the �lm thickness t. Hence for suÆciently thin �lms, it seems reasonable to
replace f(z) by z, whereas for suÆciently thick �lms, it seems plausible to replace
f(z) by 1. This cross{over will play an important role in our analysis.

Summing up: Under the assumption (6), we obtain the functional

E2d(m) = d2 t
Z
(�w;w)2

jr0mj2 dx0 + Q t
Z
(�w;w)2

(m2
1 +m2

3) dx
0

+ t
X
n0

f

 
� jn0j t
2w

! ����� n
0

jn0j �m
0
n0

�����
2

+ t
X
n0

g

 
� jn0j t
2w

!
jm3;n0 j2; (9)

which is to be minimized among all m: IR2 ! IR3 with

m(x1 + 2w; x2) = m(x1; x2) and m(x1; x2 + 2w) = m(x1; x2)

under the constraint
jmj2 = 1 on IR2:
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3 N�eel walls and cross-tie walls

3.1 The one{dimensional N�eel wall

A wall is a transition layer which connects two essentially constant magnetizations
m�. In a soft thin �lm, walls are commonly of N�eel type. The simplest model of
such a wall assumes that m depends only on the transverse variable, i.e.

m = m(x1):

Contrary to the Bloch wall in bulk samples (see [7, 3.6.1(A)]), the N�eel wall avoids
surface charges at the expense of volume charges. It achieves this by an entirely
in{plane rotation

m3 = 0:

Hence we may describe a N�eel wall by the angle � the magnetization forms with the
wall normal

m0 =

 
cos �

sin �

!
: (10)

Figures 1 give a sketch of the magnetization within a N�eel wall. The relevant energy
functional is

E1d(m
0) = d2 t

Z w

�w
jdm

0

dx1
j2 dx1 + t

X
n1

f

 
� jn1j t
2w

!
jm1;n1 j2 + Q t

Z w

�w
m2

1 dx1; (11)

where the one{dimensional Fourier coeÆcients are given by

m1;n1 =
1

(2w)
1
2

Z w

�w
ei � n1

x1
w m1(x1) dx1 for n1 2 ZZ:

t �
�
�
�

Figure 1: Magnetization in N�eel wall

It is well understood from formal arguments and from numerical simulations in the
physics literature that the N�eel wall consists of two qualitatively distinct elements:
the core and a slowly decaying tail. For the convenience of the reader, we cite
the key sentences from the careful discussion in [7, 3.6.4(C)]: \Part of the charge is
concentrated in the core, where it supports a low energy state by the close interaction
with its counterpart of opposite polarity. This part is limited by the exchange energy,
which prevents an arbitrarily narrow core width. The other part of the charge gets
widely spread in the tail". As we shall see in Subsection 4.2, the larger the tail width
w, the lower the stray �eld energy. Hence it is important that the tail is con�ned
by some mechanism to a length w. Otherwise, the tail would take over the entire
rotation of the magnetization at vanishing cost: The two bulk magnetizations m�

would \di�use" into each other.
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3.2 Repulsive interaction between N�eel walls

The mechanism which contains the tails of a N�eel wall can be anisotropy favoring
the bulk magnetizations m� =

�
0
�1

�
as in (11), or it can be the �nite size of the

sample. In this paper, we investigate the case where the tail is con�ned by the tail of
a neighboring wall at distance w. Hence we also neglect anisotropy and just consider

E1d(m
0) = d2 t

Z w

�w
jdm

0

dx1
j2 dx1 + t

X
n1

f

 
� jn1j t
2w

!
jm1;n1 j2: (12)

The simplest way to realize this repulsive interaction is to consider a periodic array
of winding walls of distance w. This is enforced by imposing the conditions

�(x1 + w) = �(x1) + � (13)

on the magnetization angle. Observe that this entails periodicity of m0 of period
2w, i. e.

m0(x1 + 2w) = m0(x1):

Figure 2 and 3 show a sketch of an array of winding N�eel walls and the corresponding
polarity of the charge distribution. Observe that these N�eel walls are 180o N�eel walls
in the sense that adjacent bulk magnetizations m� di�er by a rotation of 180o.

x 2

x 1
w

Figure 2: Magn. in winding N�eel wall

+

+

+

+

+

+

+

+

+

−

−

−

−

−

−x 2

x 1
w

Figure 3: Charges in winding N�eel wall

The goal of this paper is to quantify the repulsive force between N�eel wall tails.
\Winding walls ... show a repulsion which increases strongly with decreasing wall
distance" [5]. Actually, a quantitative analysis of this repulsive force is still consid-
ered an open question by the physics community [7, p.245] both analytically and
numerically. Let e(d; t; w) denote the minimum of (12) among all magnetizations
m0 with (10) and (13):

e(d; t; w) := min
m0 satis�es (10)and (13)

E1d(m
0):

Observe that this is twice the speci�c N�eel wall energy. The repulsive force given by

�(d; t; w) =
@e

@w
(d; t; w):
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Hubert & Holz [6, p.148] were the �rst to try to quantify the increase in the speci�c
energy of a N�eel wall due to a decreasing distance w to a neighboring wall. They
write \Es ist f�ur viele Fragen von Interesse, wie die Energie der N�eelwand zunimmt,
wenn die L�ange des Ausl�aufers k�unstlich eingeschr�ankt wird, etwa durch eine be-
nachbarte Wand gleichen Drehsinns oder durch die Probenberandung. �Uberschlags-
m�a�ige Rechnungen zeigen, da� die Wandenergie n�aherungsweise durch

Eg = Eg0 + Eg1

�
D

xc

� 1
3

(14)

dargestellt werden kann."1 In our notation, (14) turns into

1

d t
e(d; t; w) = e0(

t

d
) + e1(

t

d
)
�
t

w

� 1
3

: (15)

We have been unable to identify a regime where (15) holds.

3.3 Cross{tie walls

We are in particular interested how the force � depends on thickness t, since this
helps to understand the cross{tie wall, as we shall see. The cross{tie wall, c.f. [7,
3.6.4], is a pattern consisting of a main N�eel wall segment and perpendicular short
N�eel wall segments (the "cross{ties"), see Figure 4, which shows a schematic pattern
of the cross{tie wall. The main N�eel wall segment is parallel to the easy axis (the
axis favored by crystalline anisotropy, indicated by Q in Figure 4, which here is
the m1{axis). The cross{ties have an equilibrium period wcross. It is conjectured
that the relevant repulsive force which keeps these N�eel walls apart | and thus sets
the equilibrium period wcross | comes from the fact that the length of the tails of
the main wall segment are limited by the tails of the adjacent cross{ties and vice
versa [7, p.245]. Figures 5 and 6 zoom in on the neighborhood of the intersection
of the main wall segment with a cross{tie. They indicate the sense of rotation of
the magnetization and the sign of the volume charge distribution. Observe that the
average distance between the repelling N�eel wall segments scales as wcross.

The reason why one observes this microstructure of N�eel walls instead of a single
180o{N�eel wall is actually well{understood: All N�eel walls in the cross{tie pattern
are of 90o or less. It is known from numerical simulations that a 90o{N�eel wall has
only approximately 12% of the speci�c energy of a 180o{N�eel wall in an experimen-
tally relevant parameter regime [7, p.240]. Hence although the total length of walls
in Figure 4 is larger, the total wall energy is smaller than for a single wall. Very
recently, Alouges, Rivi�ere and Serfaty identi�ed the proportions of the optimal wall
pattern in a cross{tie wall [1] (which has smooth transitions instead of the diago-
nal walls in Figure 4, in agreement with numerical simulations and experiments)!

1\It is of interest for many applications how the energy of a N�eel wall increases as the length

of its tail is constrained arti�cially, for instance through a neighboring wall of same winding sense

or the sample edge. Rough calculations show that the wall energy can be approximated by ..."
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w

Q

x 2

x 1

Figure 4: Magnetization in cross{tie wall

x2

x1

Figure 5: Magnetization near cross{tie

−
−
−

x1

x2

−+
+
+

−  −  −

−  −  −

−
−

+  +  +

+  +  +

+
+
+

Figure 6: Volume charges near cross{tie

Roughly speaking, their starting point is the expression for the angle{dependent
speci�c N�eel wall energy valid in suÆciently thick �lms. But their analysis, though
very impressive, neglects anisotropy and the repulsive interaction between the walls.
Therefore it does not capture the mechanisms that determine wcross | the objective
of this paper.

The mechanisms which set the equilibrium cross{tie period wcross are still debated:
\... a consistent theory of the cross{tie wall is still lacking. Numerical computations
point in the right direction but are necessarily restricted to small cross{tie periods."
[7, p.245]. Experimentally, the cross{tie wall is ubiquitous and well{studied. Ex-
periments show that the cross{ties move closer together with increasing crystalline
[9, Fig 7]:

wcross is proportional to
1

Q
: (16)

It is also experimentally observed that cross{ties move closer together as the �lm
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thickness t increases [7, Fig 5.59]:

wcross decreases as t increases: (17)

There is no doubt that the force which keeps the cross{ties close together is crys-
talline anisotropy: In a band of a thickness which scales with wcross, the magne-
tization deviates O(1) from the easy direction, see Figure 4. In view of (9) (with
easy axis m1 instead of m2), the anisotropy energy scales as Q twcross. Hence the
attractive potential �attr scales as

�attr � Q t or
1

d
�attr � Q

t

d
: (18)

In order to be compatible with (16) and (17), the repulsive potential �rep should
obviously scale as

1

d
�rep � �h( t

d
)
d

w
with sublinear h:

By \sublinear" we mean h(z) � z� with � < 1 for z � 1 or z � 1 (either would do).
If the relevant repulsive force comes indeed from the repulsion of N�eel wall tails, we
expect

�rep � �(d; t; wcross);

since the average distance between the winding N�eel wall segments in Figure 4 scales
with wcross. Hence if the hypothesis that the relevant repulsive interaction between
cross-ties comes from the repulsive interaction of N�eel wall tails is true, there should
be a regime such that

1

d
�(d; t; w) � �h( t

d
)
d

w
with sublinear h: (19)

Of course, this argument is purely heuristic: One of its implicit hypothesis is that
the correction | at least in scaling | to the speci�c N�eel wall energy due to con-
�nement by neighboring N�eel walls is independent of the angle of these N�eel walls
and also applies to more complicated geometries where the neighboring walls are
not necessarily parallel at distance w, but only have average distance w. Hence the
goal of this paper is to identify a parameter regime where (19) holds. In fact, in
Theorem 1 we will show that

1

d
�(d; t; w) � �4 � d

w
for d � w and ln

w

d
� t

d
� w

d
:

Together with (18), this predicts the scaling

wcross � d2

Q t
for Q � 1 and ln

1

Q
� t

d
� 1

Q
1
2

:

Not just the scaling but also the regime is consistent with the experimental obser-
vations for Permalloy [7, Fig 5.59].
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4 Announcement and discussion of rigorous re-

sults

It seems hopeless to �nd an analytic expression for �(d; t; w) or e(d; t; w). The strat-
egy therefore is asymptotic analysis: Find analytic expressions which approximate
e(d; t; w) in certain parameter regimes. It thus seems natural to �rst investigate the
homogeneous expressions (8) for the Fourier multiplier f separately. The resulting
variational problem then has a single non{dimensional parameter (instead of two)
and therefore a much reduced complexity. They will be treated in Subsection 4.1
for the \thick{�lm regime", i. e.

thick{�lm approximation: f(z) is replaced by 1

and in Subsection 4.2 for the \thin{�lm regime", i. e.

thin{�lm approximation: f(z) is replaced by z:

But, as we shall see, both of these homogeneous reductions fail to capture a regime
with (19)! That such an intermediate regime exists is only revealed by a more careful
analysis of the true energy, which is presented in Subsection 4.3.

4.1 The thick{�lm regime

For suÆciently thick �lms, it seems justi�ed to replace f in (12) by the second
homogeneous expression in (8), so that we are led to consider

Ethick(m) = d2 t
Z w

�w
jdm

0

dx1
j2 dx1 + t

Z w

�w
m2

1 dx1; (20)

which is an entirely local functional. This allows for a standard treatment of the
wall. As for E1d, we denote the minimum of Ethick among all m0 with (10) and (13)
with ethick(d; t; w).

Proposition 1 In the regime of suÆciently distant walls in the sense of

d � w; (21)

we have
1

d t
ethick(d; t; w) � 8 � 2 exp(�w

d
): (22)

(21) and (22) is just a short notation for the following statement: For any � > 0,
there exists a Æ > 0 such that whenever

d � Æ w;

we have

1� � �
1
d t
ethick(d; t; w) � 8

2 exp(�w
d
)

� 1 + �:

We shall now address two questions

12



A) When does the thick{�lm approximation seem reasonable?

B) What (tentative) predictions may we draw from Proposition 1 w. r. t. �?

Question A). The proof of Proposition 1 indicates that the minimizer features a core
of size d (with exponential decay), but no slowly decaying tail. In particular, the
largest length scale is of order d. Hence the approximation of f(z) by 1 is seemingly
justi�ed if and only if

t � d: (23)

Hence we expect (22) to be a good approximation as long as (23) is satis�ed. In
Subsection 4.3, we shall see that even for the leading order term Ethick � 8 d t, this
is too optimistic by a logarithm.

Question B). In view of the answer to A), Proposition 1 predicts that for suÆciently
thick �lms in the sense of (23) and for suÆciently far{away walls in the sense of
(21), we have

1

d
�(d; t; x) � 1

d
�thick(d; t; x) � � t

d
exp(�w

d
): (24)

Thus we obtain an exponential dependence on w instead of the desired inverse
proportionality in (19). In fact, this tentative prediction is wrong (apart from the
regime of extremely thick �lms), as we shall see in Subsection 4.3!

4.2 The thin{�lm regime

For suÆciently thin �lms, it seems justi�ed to replace to replace f in (12) by the
�rst homogeneous expression in (8), so that we are lead to consider

Ethin(m) = d2 t
Z w

�w
jdm

0

dx1
j2 dx1 + t2

X
n1

� jn1j
2w

jm1;n1j2: (25)

As for E1d, we denote the minimum of Ethin among all m0 with (10) and (13) with
ethin(d; t; w).

Proposition 2 In the regime of suÆciently distant walls in the sense of

d2

t
� w; (26)

we have
ln w t

d2

t2
ethin(d; t; w) � � � ln ln w t

d2

ln w t
d2

: (27)

13



(26) and (27) is just a short notation for the following statement: There exists a
possibly large but universal constant C <1 such that whenever

d2

t
� 1

C
w;

we have
1

C

ln ln w t
d2

ln w t
d2

� ln w t
d2

t2
ethin(d; t; w) � � � C

ln ln w t
d2

ln w t
d2

:

In case of a N�eel wall limited by anisotropy, a similar scaling law, with a less explicit
correction term, has been announced in [2, Theorem 3.2]. The proof of this related
scaling law without the correction term can be found in [4, Chapter 3.4.2]. Our
proof of Proposition 2 essentially follows the same strategy. A �ner analysis of the
minimizer itself, which in particular captures its logarithmic tail, is in [8], again in
the case of a N�eel wall limited by anisotropy. This requires a rather subtle analysis
which is quite di�erent from ours.

Let us brie
y address the following three questions

A) Could we have guessed the scaling (27)?

B) When does the thin{�lm approximation seem reasonable?

C) Which predictions w. r. t. � may be drawn from Proposition 2?

Question A): Observe that in the thin{�lm approximation (25), the magnetostatic
energy is the square of the homogeneous H

1
2 ((�w;w)){norm of m1

X
n1

� jn1j
2w

jm1;n1j2 =
1

2
k( d

dx1
)
1
2m1k2L2((�w;w)):

Hence, as opposed to (20), (25) keeps the nonlocal character of (12). Without the
exchange{energy term, the in�mum ethin would be zero, since H

1
2 ((�w;w)) fails to

embed into L1((�w;w)): One can construct a sequence of winding magnetizations
(13) with vanishing H

1
2 ((�w;w)){norm. Hence we expect

ethin(d; t; w) � t2 for
w t

d2
� 1;

the latter being the single non{dimensional parameter. The failure of the embedding
of H

1
2 ((�w;w)) into L1((�w;w)) is a consequence of the failure of the embedding

of H1 into L1 in two space dimensions (since H
1
2 ((�w;w)) is the space of traces

of H1((�w;w)� IR){functions), which is a classical fact: H1{functions may have a
logarithmic singularity. But this embedding barely fails: The spaces H

1
2 ((�w;w))

and L1((�w;w)) have the same scaling | both are scale invariant in fact. Hence
it is not surprising that a logarithm appears in Proposition 2

ethin(d; t; w) � t2 ln�1 w t

d2
for

w t

d2
� 1:

14



The fact that the correction term contains a double logarithm is not so obvious |
it is a consequence of the nonlinearity | and requires some work.

Question B): The proof of Proposition 2 suggests that the minimizer has a core and
a logarithmic tail with

size of core � d2

t
possibly modulo a logarithm;

size of logarithmic tail � w;

This gives an additional meaning to the condition (26). In particular, the smallest
length scale is of order d2

t
. This scale is much larger than the �lm thickness t if and

only if

t � d: (28)

Hence we expect (27) to be a good approximation as long as (28) is satis�ed. In
Subsection 4.3, we shall see that this is too pessimistic by a logarithm.

Question C): In view of the answer to B), Proposition 2 predicts that for suÆciently
thin �lms in the sense of (28) and for suÆciently far{away walls in the sense of (26),
we have

1

d
�(d; t; w) � 1

d
�thin(d; t; w) � ��

�
t

d

�2 d

w
ln�2 w t

d2
: (29)

We obtain a quadratic growth of the potential in t instead of the desired sublinear
growth (19). Also the correction term does not indicate a cross{over in the t{scaling
to sublinear growth.

4.3 The intermediate regime

So far, we were not successful in identifying a regime with (19), c.f. (24) and (29).
We studied both extreme regimes and thereby necessarily covered the two possible
leading order scalings of e. But of course we did not cover all possible �rst order
corrections that way | there will be more than the two extreme regimes for the
�rst order correction, which we call intermediate regimes. Since w does not appear
at leading order in the thick{�lm regime, it is indeed important to look at the �rst
order corrections. In some intermediate regime, the �rst order correction will be
determined by the cross{over in f . This is our only chance to uncover a regime
with (19). More precisely, the only chance is an intermediate regime, where the
leading order scaling is �a la thick{�lm (and thus w{independent) but where the �rst
order correction comes from the cross{over in f . This is exactly what we will do in
Theorem 1.

From experiments, it is well{known that these intermediate regimes (which must
be close to t � d) are very rich: It is at these thicknesses where one observes the
transition from N�eel to cross{tie wall and from cross{tie wall to the asymmetric
Bloch wall [7, Fig.3.79].
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Theorem 1 Suppose the wall distance is suÆciently large and the �lm is moderately
thick in the sense of

d � w and ln
w

d
� t

d
� w

d
: (30)

Then we have
1

d t
e(d; t; w)� 8 � �4 � d

t
ln
w

d
:

An ad{hoc analytic approximation of the minimizer in an analogous regime was given
in [10]. As noted earlier, only the case of walls limited by anisotropy is considered
in [10].

Let us address two questions

A) What predictions w. r. t. � may be drawn from Theorem 1?

B) To what extent could we have guessed Theorem 1 from Propositions 1 and 2?

Question A): We indeed have identi�ed a regime, namely (30) in which we have

1

d
�(d; t; w) � �4 � d

w
!

Question B): As can be easily checked, the cross{over between the leading order of
ethick in (22) and ethin in (27) happens for moderate thicknesses

t

d
� ln

w

d
:

Hence we would indeed have guessed the leading order

e(d; t; w) �
(

8 d t for t
d
� ln w

d

� t2 ln�1 w t
d2

for t
d
� ln w

d

)
:

We also can successfully guess the scaling of the correction term: We start by observ-
ing that the Fourier multiplier is dominated by either homogeneous approximation

f(z) � minfz; 1g:

This implies of course that

E(m0) � minfEthick(m0); Ethin(m0)g

and therefore
e(d; t; w) � minfethick(d; t; w); ethin(d; t; w)g: (31)

Moreover, as we pointed out in Subsections 4.1 and 4.2, the minimizer of Ethick,

m�
thick lives on length scales d; (32)
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whereas the minimizer of Ethin,

m�
thin lives on length scales from

d2

t
to w: (33)

Therefore it seems reasonable that the true N�eel wall m� combines features of the
thick{�lm N�eel wall and the thin{�lm N�eel wall. A certain fraction of the rotation of
m0 near the center is done according to the narrow thick{�lm scenario, the remainder
is done in line with the broad thin{�lm scenario. To �x ideas, let us think of a convex
combination on the level of the m1{component

m�
1 = �m�

1;thick + (1� �)m�
1;thin;

which ensures m�
1(0) = 1. Since the magnetostatic energy is quadratic in m1 (and

the exchange energy at least strictly convex in m1, see Lemma 8 below), and thanks
to the separation of scales (32) & (33), it seems reasonable to assume that

E(m�) � �2E(m�
thick) + (1� �)2E(m�

thin)

� �2Ethick(m
�
thick) + (1� �)2Ethin(m

�
thin):

Optimizing in � would yield

1

e
� 1

ethick
+

1

ethin

| a re�nement of (31). We now plug in the leading order expressions from Propo-
sitions 1 and 2

1

e
� 1

8 d t
+
ln w t

d2

� t2

=
1

8 d t

 
1 + (ln

w t

d2
)
8

�

d

t

!
: (34)

We observe that (30) implies 1� ln t
d
� ln w

d
, so that

ln
w t

d2
= ln

w

d
+ ln

t

d
� ln

w

d
: (35)

Therefore, again according to (30), (ln w t
d2
) d
t
is a small perturbation in (34). Hence

we would obtain

1

d t
e� 8 � �(ln w t

d2
)
64

�

d

t

(35)� �64

�

d

t
ln
w

d
;

which gives the right scaling for the correction term, but the wrong constant. It is
not surprising that the constant is wrong since the functional is not quadratic in
m1, which matters for the thick{�lm wall.
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5 Proofs

5.1 Proof of Proposition 1

It is convenient to measure length and energy in the reduced units

x1 = d x̂1 and Ethin = d t Êthick:

Then

Êthick(m
0) =

Z ŵ

�ŵ
jdm

0

dx̂1
j2 dx̂1 +

Z ŵ

�ŵ
m2

1 dx̂1

=
Z ŵ

�ŵ
(
d�

dx̂1
)2 dx̂1 +

Z ŵ

�ŵ
cos2 � dx̂1 = Êthick(�);

where there is a single non{dimensional parameter ŵ

ŵ :=
w

d

(21)� 1: (36)

Our goal is to show that in the regime (36),

min
�
Êthick(�)� 8 � 2 exp(�ŵ); (37)

where the minimum is taken over all � with

�(x̂1 + ŵ) = �(x̂1) + �: (38)

In the sequel, we will drop the hats.

This variational problem admits a minimizer ��. The Euler{Lagrange equation is
given by

�2 d
2��

dx2
+

d

d��
(cos2 ��) = 0:

The �rst integral is
d

dx
[�(d�

�

dx
)2 + cos2 ��] = 0:

According to (38), the range of �� is IR. Therefore cos2 �� will be zero for some x.
Hence there exists an � � 0 s. t.

(
d��

dx
)2 = cos2 �� + �2:

The case � = 0 is ruled out as a solution of (d�
�

dx
)2 = cos2 �� could never satisfy

(38). Hence � > 0. Since �� is smooth and cannot | in view of (38) | be monotone
decreasing, we must have

d��

dx
= (cos2 �� + �2)

1
2 : (39)
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Thanks to a translation, we may always assume

��(0) = 0
(38)
=) ��(�w) = ��: (40)

It then follows from (39) that

�� is a monotone map from (�w;w) onto (��; �): (41)

� is implicitly determined by

Z �

0

1

(cos2 � + �2)
1
2

d�
(41)
=

Z w

0

1

(cos2 �� + �2)
1
2

d��

dx1
dx1

(39)
= w

or { by symmetry { Z �

2

0

1

(cos2 � + �2)
1
2

d� =
w

2
: (42)

Since the l. h. s. of (42), i. e.

Z �

2

0

1

(cos2 � + �2)
1
2

d� (43)

is bounded if � is bounded away from zero, we deduce from (36) that necessarily

� � 1: (44)

On the other hand (43) diverges logarithmically for � = 0 due to the singularity at
� = �

2
. Hence

Z �

2

0

1

(cos2 � + �2)
1
2

d�
(44)�

Z �

2

0

1

((� � �
2
)2 + �2)

1
2

d�
(44)� ln

1

�

and thus by (42)

� � exp(�w
2
): (45)

We now have all the ingredients to analyze the minimal energy

e(�) :=
Z w

�w
(
d��

dx1
)2 dx1 +

Z w

�w
cos2 �� dx1

(39);(41)
=

Z �

��
(cos2 � + �2)

1
2 d� +

Z �

��
cos2 �

(cos2 � + �2)
1
2

d�

=
Z �

��
2 cos2 � + �2

(cos2 � + �2)
1
2

d�

= 4
Z �

2

0

2 cos2 � + �2

(cos2 � + �2)
1
2

d�:

We observe

e(0) = 8
Z �

2

0
cos � d� = 8: (46)
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and
de

d�
= 4 �3

Z �

2

0

�
1

cos2 � + �2

� 3
2

d�:

Since the last integral diverges for � = 0 due to the singularity at � = �
2
, we have

according to (44)

de

d�
� 4

Z �

2

0

 
�2

(� � �
2
)2 + �2

!3
2

d�

= 4 �
Z �

2 �

0

 
1

�̂2 + 1

! 3
2

d�̂

� 4 �
Z 1

0

 
1

�̂2 + 1

!3
2

d�̂ = 4 �
Z 1

0

d

d�̂

0
@ �̂q

�̂2 + 1

1
A d�̂ = 4 �: (47)

From (46) and (47) we obtain as desired

e(�)� 8 � 2 �2
(45)� 2 exp(�w):

5.2 Proof of Proposition 2

It is convenient to measure length and energy in the reduced units

x1 = w x̂1 and Ethin = t2 Êthin:

Then

Êthin(m
0) = �

Z 1

�1
jdm

0

dx̂1
j2 dx̂1 +

X
n̂1

� jn̂1j
2

jm1;n̂1j2; (48)

where

m1;n̂1 =
1p
2

Z 1

�1
ei � n̂1 x̂1 m1(x̂1) dx̂1

and � is the single nondimensional parameter

� :=
d2

t w

(26)� 1:

Our goal is to show that in this regime,

(ln
1

�
) min

m0
Êthin(m

0)� � � ln ln 1
�

ln 1
�

; (49)

where the min is taken over all m0 of the form (10) with

�(x̂1 + 1) = �(x̂1) + �: (50)
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In the sequel, we will drop the hats. The upper bound with the scaling indicated in
(49) will be established in Lemma 4, the lower bound in Lemma 7.

We start with a few observations. Because of jm0j2 = 1, Ethin can be expressed in
terms of m1 2 [�1; 1] alone:

Ethin(m1) = �
Z 1

�1

1

1�m2
1

(
dm1

dx1
)2 dx1 +

X
n̂1

� jn1j
2

jm1;n1j2

with the understanding that

1

1�m2
1

(
dm1

dx1
)2 =

8<
:

+1 if m1 = �1 and dm1

dx1
6= 0

0 if m1 = �1 and dm1

dx1
= 0

9=
; :

Furthermore, (50) implies that there exists an x0 with m1(x0) = 1, so that by
translation invariance of the integrand we may assume w.l.o.g.

m1(0) = 1:

Hence we have to minimize Ethin among all m1: IR! [�1; 1] with

m1(x1 + 1)
(50)
= �m1(x1) and m1(0) = 1: (51)

In a �rst pass, we will replace Ethin by the quadratic functional ~Ethin

Ethin(m1) � �
Z 1

�1
(
dm1

dx1
)2 dx1 +

X
n1

� jn1j
2

jm1;n1j2 =: ~Ethin(m1): (52)

Let m�
1 denote the minimizer of ~Ethin among allm1 with (51). The �rst lemma gives

the explicit formula for m�
1 in Fourier space.

Lemma 1 The Fourier coeÆcients of m�
1 are given by

m�
1;n1

=
1

��

8><
>:

p
2

2 � � n2
1 + jn1j for n1 odd

0 for n1 even

9>=
>; ; (53)

where

j�� � ln
1

�
j <� 1: (54)

We also have

j(ln 1
�
) ~Ethin(m

�
1)� �j <� ln�1 1

�
: (55)

In view of (52), this yields the suboptimal lower bound

(ln
1

�
) min

m0
Ethin � �

>� 1

ln 1
�

; (56)

21



which we will improve upon towards the end of the proof of Proposition 2. But �rst
we consider the upper bound. We cannot use m�

1 as an upper{bound construction
| its energy is in�nite

Ethin(m
�
1) = +1:

Indeed, the variational problem for m�
1 is a compact perturbation of

minimze �
Z 1

�1
(
dm1

dx1
)2 dx1 among all m1 with (51):

Hence we expect

�dm
�
1

dx1
(0+) =

dm�
1

dx1
(0�) > 0:

We thus need another approach for the upper{bound construction: Lemma 1 sug-
gests to viewm�

1 as a regularized (on length scale �) and normalized (by ��) version of
the function �0 given by its Fourier coeÆcients �0;n1 =

p
2

jn1j for n1 odd and �0;n1 = 0
for n1 even. For the upper{bound construction, we will consider a di�erent regular-
ization �Æ (on lengthscale Æ) of �: the harmonic extension of �0. Lemma 2 identi�es
the real{space representation of �Æ.

Lemma 2 The function

�Æ(x1) :=
X
n1

(�1)n1 ln 1q
(x1 � n1)2 + Æ2

(57)

is well de�ned and has the Fourier coeÆcients

�Æ;n1 =

8><
>:
p
2

jn1j exp(�� jn1j Æ) for n1 odd

0 for n1 even

9>=
>; : (58)

In Lemma 3, we will estimate the energy of the normalized �Æ. We then optimize in
Æ (Æ = � ln 1

�
) and so obtain the desired upper bound.

Lemma 3 We have

(ln
1

�
) min

m0
Ethin(m

0)� �
<� ln ln 1

�

ln 1
�

: (59)

The remainder of the proof is devoted to �lling the gap between (56) and (59).
Obviously, we may not totally neglect the nonlinearity in the exchange energy, as
done for (56). The idea is to interpret Ethin as a perturbation of ~Ethin:

Ethin(m1) = ~Ethin(m1) + �
Z 1

�1

m2
1

1�m2
1

(
dm1

dx1
)2 dx1
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and to write the minimizerm1 of Ethin with (51) as a perturbation of the minimizer
m�

1 of ~Ethin

�1 = m1 �m�
1 satis�es �1(x1 + 1) = ��1(x1) and �1(0) = 0: (60)

Since ~Ethin is a quadratic functional and m�
1 its minimizer, we have

~Ethin(m1)� ~Ethin(m
�
1) = ~Ethin(�1):

Hence we may write

Ethin(m1) = ~Ethin(m
�
1) + ~Ethin(�1) + �

Z 1

�1

m2
1

1�m2
1

(
dm1

dx1
)2 dx1; (61)

which is our starting point.

We �rst show that m�
1 has indeed a logarithmic tail outside a core region of size �.

Lemma 4 We have

j��m�
1 � �0j <�

 
�

jx1j

!2

for 0 < jx1j � 1:

We now bound the last term in (61), i. e. the nonlinear perturbation, from below by
a linear term which is much larger than the linearized exchange energy, at least in
the core region.

Lemma 5 For

Æ := �
ln

2
3 1
�

(ln ln 1
�
)
1
3

� �; (62)

we have

�
Z 1

�1

m2
1

1�m2
1

(
dm1

dx1
)2 dx1

>� Æ
Z Æ

�
(
dm1

dx1
)2 dx1: (63)

The next lemma is crucial in getting the correct order of the correction term, i. e.
ln ln 1

�

ln 1
�

in the lower bound.

Lemma 6 Let
� � Æ � 1: (64)

Let the 2{periodic function u have a logarithmic behavior over (�; Æ) in the sense of

Z 2�

�
(u� �u)2 dx1

>� � for all �� �� Æ; (65)

where �u denotes the mean value of u on (�; 2�). Then we have for any 2{periodic
function � X

n1

� jn1j
2

j�n1j2 + Æ
Z Æ

�
(
d

dx1
(� � u))2 dx1

>� ln
Æ

�
:
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Together with (55), the last lemma establishes the desired lower bound:

Lemma 7 We have

(ln
1

�
)
�
Ethin(m1)� ~Ethin(m

�
1)
�

>� ln ln 1
�

ln 1
�

:

Proof of Lemma 1. ~Ethin has a nice representation in terms of its Fourier coeÆ-
cients

~Ethin(m1) =
�

2

X
n1

�
2 � � n2

1 + jn1j
�
jm1;n1 j2:

On the level of the Fourier coeÆcients, (51) translates into

�m1;n1 = m1;�n1 ; m1;n1 = 0 for n1 even; and
X
n1

m1;n1 =
p
2; (66)

where the bar denotes complex conjugation. The minimization of ~Ethin among all
fm1;n1gn1 with (66) can be carried out explicitly. The Fourier coeÆcients of the
minimizer m�

1 are indeed given by (53), where Lagrange multiplier �� ensures the
last condition in (66), and hence has to be chosen as

�� :=
X
n1 odd

1

2 � � n2
1 + jn1j :

In particular, we have
~E(m�

1) =
�

��
: (67)

Let us now show (54). Indeed, on one hand we have

Z 1

1

1

2 � � z2 + z
dz =

Z 1

1

d

dz

�
ln

z

2 � � z + 1

�
dz

= ln
1 + 2 � �

2 � �
= ln

1

�
� ln

2 �

1 + 2 � �
;

so that Z 1

1

1

2 � � z2 + z
dz � ln

1

�
� � ln 2 � � �1:

On the other hand,

X
n1 odd

1

2 � � n2
1 + jn1j �

Z 1

1

1

2 � � z2 + z
dz

=
X
n1 odd

n1�1

Z n1+2

n1

 
1

2 � � n2
1 + n1

� 1

2 � � z2 + z

!
dz

� X
n1 odd

n1�1

Z n1+2

n1

�
1

n1

� 1

z

�
dz � X

n1 odd

n1�1

1

n2
1

� 1:

24



This proves (54).

In view of (67), (54) implies (55):

j(ln 1
�
) ~E(m�

1)� �j (67)
=

�

��
j ln 1

�
� ��j

(54)
<� 1

��
(54)� ln�1 1

�
:

Proof of Lemma 2.

We start by arguing that (57) is well{de�ned. In fact, �Æ is the harmonic extension
�� of �0 in the two variables (x1; x3), evaluated at x3 = Æ. We will argue that the
latter, i. e.

��(x1; x3) =
X
n1

(�1)n1 ln 1

((x1 � n1)2 + x23)
1
2

(68)

is well{de�ned. Indeed, since we can write �� as

��(x1; x3) =
X

n1 even

~�(x1 + n1; x3); (69)

where the second order di�erence

~�(x1; x3) := ln
1

(x21 + x23)
1
2

� 1

2
ln

1

((x1 � 1)2 + x23)
1
2

� 1

2
ln

1

((x1 + 1)2 + x23)
1
2

has good decay properties, i. e.

j~�(x1; x3)j <� 1

x21 + x23
for x21 + x23 � 1;

�� is well{de�ned.

We now give the argument in favor of (58). The function (68) of two variables is
known to be a fundamental solution:

�
 
@2 ��

@x21
+
@2 ��

@x23

!
= 2 �

X
n1

(�1)n1 Æ((x1; x3)� (n1; 0)):

In particular, it indeed has the symmetries as suggested by the formal representation
(57), that is,

��(x1 + 1; x3) = ���(x1; x3):

Hence if the function �: IR! IR has the same symmetry as �0(x1), that is,

�(x1 + 1) = ��(x1); (70)

the convolution

u(x1; x3) :=
Z 1

�1

��(x1 � y1; x3) �(y1) dy1 (71)
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solves

�
 
@2u

@x21
+
@2u

@x23

!
(x1; x3) = 0 for x3 6= 0;

�
 
@u

@x3
(x1; 0+)� @u

@x3
(x1; 0�)

!
= 4 � �(x1):

From this, we gather that

u(x1; x3) =
X
n1

un1 exp(�� jn1jjx3j) 1p
2
ei � n1 x1 ; (72)

where the Fourier coeÆcients un1 of u(x1; x3 = 0) are related to those of � by

un1 =
2

jn1j �n1 : (73)

On the other hand, we deduce from (71)

un1 =
p
2�0;n1 �n1: (74)

Since the real functions �0 and � obey the same symmetry (70), we infer (58) for
Æ = 0 from (73) and (74). Like in (72), we have

�Æ;n1 = exp(�� jn1j Æ)�0;n1:

This yields (58) for Æ > 0.

Proof of Lemma 3.

Our Ansatz for the upper bound construction m1 is the normalized �Æ from Lemma
2, i. e.

m1(x1) :=
�Æ(x1)

�Æ(0)
; (75)

where the length scale Æ � 1 will be chosen at the end of the proof of this lemma.
One can see from a resummation as in (69) that �Æ attains its maximum in x1 2
f� � � ;�2; 0; 2; � � �g. Hence j�Æj attains its maximum for x1 2 ZZ. Therefore (75)
de�nes an m1 with jm1j � 1 and jm1j = 1 if and only if x1 2 ZZ. We will show that
exchange and magnetostatic energy behave as

�
Z 1

�1

1

1�m2
1

(
dm1

dx1
)2 dx1

<� �

Æ
ln�1 1

Æ
; (76)

X
n1

jn1j jm1;n1j2 � 2 ln�1 1

Æ
<� ln�2 1

Æ
: (77)

At the end of the proof, we will select Æ.
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Let us begin with the estimate of the linear magnetostatic energy (77) for which we
use the Fourier representation of �Æ. In view of

j�Æ(0)� ln
1

Æ
j <� 1; (78)

(77) amounts to X
n1

jn1jj�Æ;n1j2 � 2 ln
1

Æ
<� 1; (79)

indeed:

X
n1

jn1jjm1;n1j2 � 2 ln�1 1

Æ

=
1

�Æ(0)2

 X
n1

jn1jj�Æ;n1j2 � 2 ln
1

Æ

!
+
2 (ln 1

Æ
+ �Æ(0))

�Æ(0)2 ln
1
Æ

(ln
1

Æ
� �Æ(0))

(79)
<� 1

�Æ(0)2
+
2 (ln 1

Æ
+ �Æ(0))

�Æ(0)2 ln
1
Æ

(ln
1

Æ
� �Æ(0))

(78)
<� ln�2 1

Æ
:

We now argue in favor of (79). According to Lemma 2, we have

X
n1

jn1jj�Æ;n1j2 = 2
X
n1 odd

1

jn1j exp(�2 � jn1j Æ):

Therefore (79) can be proved using the same argument we used for (54).

Let us now consider the nonlinear exchange energy (76) for which we use the real{
space representation of �Æ. We will argue that the leading order contribution to the
exchange energy on (�1

2
; 1
2
) comes from the \near{�eld"

~�Æ(x1) := ln
1

(x21 + Æ2)
1
2

; (80)

~m1(x1) :=
~�Æ(x1)
~�Æ(0)

:

We also consider the \far{�eld" of �Æ:

 Æ(x1) :=
X
n1 6=0

(�1)n1 ln 1

((x1 � n1)2 + Æ2)
1
2

and observe

 Æ is smooth on (�1
2
; 1
2
) uniformly in Æ and

d Æ
dx1

(0) = 0:

Together with

�Æ(0) � ~�Æ(0) = ln
1

Æ
; (81)
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we obtain ������
d Æ
dx1

�Æ(0)

������
<� (ln�1 1

Æ
)

jx1j
x21 + Æ2

= jd ~m1

dx1
j:

We conclude

(
dm1

dx1
)2 � (

d ~m1

dx1
)2 on (�1

2
;
1

2
): (82)

Likewise, we have

j Æ(0)�  Æ(x1)j � ln(1 + (
x1
Æ
)2) = ~�Æ(0)� ~�Æ(x1) for x1 2 (�1

2
;
1

2
)

and thus

�Æ(0)� �Æ(x1) � ~�Æ(0)� ~�Æ(x1) for x1 2 (�1

2
;
1

2
);

which together with (81) yields

1�m1 � 1� ~m1 or
1

1�m2
1

� 1

1� ~m2
1

on (�1

2
;
1

2
): (83)

(82) and (83) combine into

1

1�m2
1

(
dm1

dx1
)2 � 1

1� ~m2
1

(
d ~m1

dx1
)2 on (�1

2
;
1

2
):

Hence in view of the symmetry m1(x1 + 1) = �m1(x1), (76) will follow from

�
Z 1

�1

1

1� ~m2
1

(
d ~m1

dx1
)2 dx1

<� �

Æ
ln�1 1

Æ
: (84)

Let us now establish (84). We observe that

~m1(x1) =
ln(x21 + Æ2)

ln Æ2
= 1� 1

2
(ln�1 1

Æ
) ln((

x1
Æ
)2 + 1):

We thus have

1

1� ~m2
1

(
d ~m1

dx1
)2 � 1

1� ~m1

(
d ~m1

dx1
)2 = 2 (ln�1 1

Æ
)

1

ln((x1
Æ
)2 + 1)

x21
(x21 + Æ2)2

;

and hence as desired

�
Z 1

�1
1

1� ~m2
1

(
d ~m1

dx1
)2 dx1 � �

Æ
(ln�1 1

Æ
)
Z 1

�1
2

ln(x̂21 + 1)

x̂21
(x̂21 + 1)2

dx̂1:

It remains to choose Æ � �. To this purpose, we observe that (76) and (77) yield

Ethin(m1)� � ln�1 1

Æ
<� �

Æ
ln�1 1

Æ
+ ln�2 1

Æ
;
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which we write as

(ln
1

�
)Ethin(m1) � �

Æ��
<� �

Æ

ln 1
�

ln 1
Æ

+
ln 1

�

ln2 1
Æ

+

 
ln 1

�

ln 1
Æ

� 1

!
: (85)

We now see that

Æ = � ln
1

�

is a good choice. Indeed, we then have

ln
1

Æ
= ln

1

�
� ln ln

1

�

��1� ln
1

�

and thus for each term appearing in the r. h. s. of (85)

�

Æ

ln 1
�

ln 1
Æ

=
1

ln 1
Æ

� 1

ln 1
�

��1� ln ln 1
�

ln 1
�

;

ln 1
�

ln2 1
Æ

� 1

ln 1
�

� ln ln 1
�

ln 1
�

;

ln 1
�

ln 1
Æ

� 1 =
ln ln 1

�

ln 1
Æ

� ln ln 1
�

ln 1
�

:

Proof of Lemma 4.
We will drop the subscript 1 in the sequel. Our starting point is the explicit Fourier
representation of m� and �0 from Lemma 1 resp. Lemma 2. We immediately see
that

u := �0 � ��m�

has the Fourier coeÆcients

un =

8<
:

p
2

jnj �
p
2

2� �n2+jnj =
p
2 2 � �

2 � � jnj+1
for n odd

0 for n even

9=
; :

Therefore we have

u(x) =
X
nodd

2 � �

2 � � jnj+ 1
ei � n x = 2

X
n�1 odd

2 � �

2 � � n + 1
cos(� n x):

If we had a Fourier transform representation of u (instead of the discrete Fourier
series representation), we would obtain the desired decay through integration by
parts. We mimic this in our discrete setting:

u(x) =
1

sin(� x)

X
n�1 odd

2� �
2� �n+1

(sin(� (n+ 1) x)� sin(� (n� 1) x))

=
1

sin(� x)

X
n�2 even

�
2� �

2� � (n�1)+1
� 2� �

2� � (n+1)+1

�
sin(� n x)
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=
2

sin(� x)

X
n�2 even

(2� �)2

(2� � (n�1)+1) (2 � � (n+1)+1)
sin(� n x)

= � 1

sin2(� x)

X
n�2 even

(2 � �)2

(2 � � (n�1)+1) (2 � � (n+1)+1)

� (cos(� (n + 1) x)� cos(� (n� 1) x))

=
cos(� x)

sin2(� x)

(2 � �)2

(2 � �+ 1) (2 � � 3 + 1)

+
1

sin2(� x)

X
n�3 odd

�
(2 � �)2

(2� �n+1) (2 � � (n+2)+1)
� (2� �)2

(2 � � (n�2)+1) (2� �n+1)

�

� cos(� n x)

=
cos(� x)

sin2(� x)

(2 � �)2

(2 � �+ 1) (2 � � 3 + 1)

� (2 � �)3

sin2(� x)

X
n�3 odd

4
(2� �n+1) (2 � � (n+2)+1) (2 � � (n�2)+1)

cos(� n x)

�
 

2 � �

sin(� x)

!2

cos(� x):

In particular, we obtain

ju(x)j <�
 

2 � �

sin(� x)

!2

and thus as desired

ju(x)j <�
�
�

x

�2

for jxj � 1:

Proof of Lemma 5.
From Lemma 1 we know

j ~Ethin(m�
1)� � ln�1 1

�
j <� 1

ln2 1
�

:

Together with the upper bound in Lemma 3, i. e.

Ethin(m1)� � ln�1 1

�
<� ln ln 1

�

ln2 1
�

;

we obtain from the decomposition (61) that in particular

�
Z 1

�1
(
d�1
dx1

)2 dx1 � ~Ethin(�1)
<� ln ln 1

�

ln2 1
�

:

Since �1(0) = 0 ( c. f. (60)), we have

j�1(x1)j �
�����
Z x1

0
jd�1
dy1

j dy1
����� �

 
jx1j

Z 1

�1
(
d�1
dy1

)2 dy1

!1
2

<� 1

ln 1
�

 jx1j
�

ln ln
1

�

!1
2

:
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Now Æ is de�ned in (62) such that

j�1(x1)j <� 1

ln 1
�

 
Æ

�
ln ln

1

�

!1
2

=
�

Æ
for jx1j � Æ: (86)

Let us write

1�m�
1

=

 
1� ln�1 1

�
ln

1

jx1j

!
+ (ln�1 1

�
) (ln

1

jx1j � ��m�
1) + ((ln�1 1

�
)�� � 1)m�

1

=
ln jx1j

�

ln 1
�

+ (ln�1 1

�
) (ln

1

jx1j � ��m�
1) + ((ln�1 1

�
)�� � 1)m�

1

=: T1 + T2 + T3:

For T1 we observe that

jT1j � (ln�1 1

�
) ln

Æ

�
<� ln ln 1

�

ln 1
�

for � � jx1j � Æ:

We bound T2 with help of Lemma 4

jT2j <� (ln�1 1

�
)

 
j�0(x1)� ln

1

jx1j j+ (
�

jx1j)
2

!
� ln�1 1

�
� ln ln 1

�

ln 1
�

for � � jx1j � Æ:

According to (54) we have

jT3j <� ln�1 1

�
� ln ln 1

�

ln 1
�

:

Hence we obtain

j1�m�
1j <� ln ln 1

�

ln 1
�

� (ln ln 1
�
)
1
3

ln
2
3 1
�

=
�

Æ
for � � jx1j � Æ: (87)

Combining (86) and (87), we obtain for m1 = m�
1 + �1

j1�m1j <� �

Æ
for � � jx1j � Æ:

resp.
m2

1

1�m2
1

>� Æ

�
for � � jx1j � Æ:

This yields (63).

Proof of Lemma 6.
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Let C < 1 denote a generic universal constant. We extend � harmonically onto
(x1; x3) 2 IR2 so that we have

X
n1

� jn1j
2

j�1;n1j2 =
1

4

Z 1

�1

Z 1

�1
(
@�

@x1
)2 + (

@�

@x3
)2 dx3 dx1: (88)

By the trace theorem and a scaling argument, we have

C
Z 2�k

2�(k+1)

Z 2�(k+1)

�2�(k+1)
(
@�

@x1
)2 + (

@�

@x3
)2 dx3 dx1 � 2k

Z 2�k

2�(k+1)
(� � ��)2 dx1; (89)

where �� denotes the mean value of � on the x1{interval (2
�(k+1); 2�k). Likewise, we

have by Poincar�e's estimate and a scaling argument

C
Z 2�k

2�(k+1)
(
d

dx1
(� � u))2 dx1

� (2k)2
Z 2�k

2�(k+1)

�
(� � u)� (� � u)

�2
dx1

� (2k)2

0
@
 Z 2�k

2�(k+1)
(u� �u)2 dx1

!1
2

�
 Z 2�k

2�(k+1)
(� � ��)2 dx1

!1
2

1
A

2

: (90)

Now (89), (90) and our assumption (65) combine into

C
n Z 2�k

2�(k+1)

Z 2�(k+1)

�2�(k+1)
(
@�

@x1
)2 + (

@�

@x3
)2 dx3 dx1

+2�k
Z 2�k

2�(k+1)
(
d

dx1
(� � u))2 dx1

o

� 2k
n Z 2�k

2�(k+1)
(� � ��)2 dx1

+

0
@ Z 2�k

2�(k+1)
(u� �u)2 dx1

! 1
2

�
 Z 2�k

2�(k+1)
(� � ��)2 dx1

! 1
2

1
A

2 o

� 2k
1

2

Z 2�k

2�(k+1)
(u� �u)2 dx1

>� 1;

provided � � 2�k � Æ. Given two nonnegative integers kmin � kmax, we sum this
estimate over k 2 fkmin; : : : ; kmaxg and use (88)

X
n1

� jn1j
2

j�1;n1j2 + 2�kmin

Z 2�kmin

2�kmax+1
(
d

dx1
(� � u))2 dx1

>�
Z 2�kmin

2�(kmax+1)

Z 1

�1
(
@�

@x1
)2 + (

@�

@x3
)2 dx3 dx1 + 2�kmin

Z 2�kmin

2�(kmax+1)
(
d

dx1
(� � u))2 dx1

>�
kmaxX
k=kmin

n Z 2�k

2�(k+1)

Z 2�(k+1)

�2�(k+1)
(
@�

@x1
)2 + (

@�

@x3
)2 dx3 dx1

+ 2�k
Z 2�k

2�(k+1)
(
d

dx1
(� � u))2 dx1

o
>� kmax � kmin + 1 � ln

2�kmin

2�(kmax+1)
:
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It remains to choose the two nonnegative integers kmin � kmax such that

2�kmin � Æ and 2�(kmax+1) � �;

which is possible according to (64).

Proof of Lemma 7.
According to (61) and (63), we have

Ethin(m1)� ~Ethin(m
�
1)

= ~Ethin(�1) + �
Z 1

�1

m2
1

1�m2
1

(
dm1

dx1
)2 dx1

� X
n1

� jn1j
2

j�1;n1j2 + Æ
Z Æ

�
(
dm1

dx1
)2 dx1

= ln�2 1

�

nX
n1

� jn1j
2

j(ln 1
�
) �1;n1j2

+Æ
Z Æ

�

 
d

dx1

�
(ln

1

�
) �1 + (ln

1

�
)m�

1

�!2

dx1
o
: (91)

We now wish to apply Lemma 6 to

� := (ln
1

�
) �1 and u := �(ln 1

�
)m�

1:

We have to verify (65). Since according to (54), �� � ln 1
�
, we have to show that

Z 2�

�
(��m�

1 � ��m�
1)

2 dx1
>� � for all �� �� Æ: (92)

Indeed, we have on one hand according to Lemma 4 that ��m�
1 is close to �0 in the

sense of

��� �Z 2�

�
(��m�

1 � ��m�
1)

2 dx1

� 1
2 �

0
@Z 2�

�

 
ln

1

jx1j �
1
�

Z 2�

�
ln

1

jy1j dy1
!2

dx1

1
A

1
2 ���

<�
�Z 2�

�
(
�

x1
)2 dx1

� 1
2 � �p

�
� p

�: (93)

On the other hand, �0 is close to log
1
jx1j and we thus have the well{known property

of the logarithm log 1
jx1j

Z 2�

�

�
�0(x1)� 1

�

Z 2�

�
�0(y1) dy1

�2

dx1 �
Z 2�

�

 
ln

1

jx1j �
1

�

Z 2�

�
ln

1

jy1j dy1
!2

dx1

=
Z 2�

�

 
1

�

Z 2�

�
ln
jx1j
jy1j dy1

!2

dx1

= �
Z 2

1

 Z 2

1
ln
jx̂1j
jŷ1j dŷ1

!2

dx̂1

� �: (94)
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The estimate (92) now follows from (93) and (94). Hence the application of Lemma
6 on the l. h. s. of (91) yields as desired

Ethin(m1)� ~Ethin(m
�
1)

>� (ln�2 1

�
) ln

Æ

�

(62)� ln ln 1
�

ln2 1
�

:

5.3 Proof of Theorem 1

We pass to the same reduced variables as in Proposition 1:

x1 = d x̂1 and E = d t Ê:

Then

Ê(m0) =
Z ŵ

�ŵ
jdm

0

dx̂1
j2 dx̂1 +

X
n̂1

f(
� t̂ jn̂1j
2 ŵ

)jm1;n̂1j2;

where m1;n̂1 denote the Fourier coeÆcients

m1;n̂1 =
1

(2 ŵ)
1
2

Z ŵ

�ŵ
ei � n̂1

x̂1
ŵ m1(x̂1) dx̂1

and where | as opposed to Proposition 1 | there are two non{dimensional param-
eters ŵ and t̂ which according to (30) satisfy

ŵ :=
w

d
� 1 and ln ŵ � t̂ :=

t

d
� ŵ: (95)

Our goal is to show that in the regime (95),

min
m0

Ê(m0)� 8 � �4 � 1

t̂
ln ŵ; (96)

where the minimum is taken over all m0 of the form (10) with

�(x̂1 + ŵ) = �(x̂1) + �:

In the sequel, we will drop the hats.

The natural strategy is to write the variational problem (96) as a perturbation of
its thick{�lm approximation (37). More precisely, we will view

� m as a perturbation of the minimizer m� of the thick{�lm approximation
(normalized by ��(0) = 0),

� E as a perturbation of Ethick.
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For the latter we observe that in view of f = 1� g, we have

E(m0) = Ethick(m
0) � X

n1

g(
� t jn1j
2w

)jm1;n1 j2; (97)

where g is de�ned in (7). As in Proposition 2, it will be convenient to express the
exchange energy in terms of m1 alone

Z w

�w
jdm

0

dx1
j2 dx1 =

Z w

�w
�(
dm1

dx1
; m1) dx1;

where

�(p;m) :=
1

1�m2
p2:

Therefore the Euler{Lagrange equation for m�
1 can be written in terms of

hgradEthick(m�
1); �1i

=
Z w

�w

(
@p�(

dm�
1

dx1
; m�

1)
d�1
dx1

+ @m�(
dm�

1

dx1
; m�

1) �1

)
dx1 + 2

Z w

�w
m�

1 �1 dx1 = 0:

We will use the Euler{Lagrange equation in the following form

Ethick(m1)� Ethick(m
�
1)

=
Z w

�w

n
�(
dm1

dx1
; m1)� �(

dm�
1

dx1
; m�

1)

�@p�(dm
�
1

dx1
; m�

1)
d�1
dx1

� @m�(
dm�

1

dx1
; m�

1) �1
o
dx1 +

Z w

�w
�21 dx1; (98)

where

�1 = m1 �m�
1:

We now split the energy into four parts

E(m)

(97)
= Ethick(m1)�

X
n1

g(
� t jn1j
2w

)jm1;n1j2

= Ethick(m
�
1) + (Ethick(m1)� Ethick(m

�
1))�

X
n1

g(
� t jn1j
2w

)jm1;n1j2

(98)
= Ethick(m

�
1)

+
Z w

�w

n
�(
dm1

dx1
; m1)� �(

dm�
1

dx1
; m�

1)

�@p�(dm
�
1

dx1
; m�

1)
d�1
dx1

� @m�(
dm�

1

dx1
; m�

1) �1
o
dx1

+
Z w

�w
�21 dx1
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�X
n1

g(
� t jn1j
2w

)jm�
1;n1
j2 � 2

X
n1

g(
� t jn1j
2w

)Re(�1;n1 m
�
1;n1)�

X
n1

g(
� t jn1j
2w

)j�1;n1j2

f=1�g
= Ethick(m

�
1)

�X
n1

g(
� t jn1j
2w

)jm�
1;n1j2

+
Z w

�w

n
�(
dm1

dx1
; m1)� �(

dm�
1

dx1
; m�

1)

�@p�(dm
�
1

dx1
; m�

1)
d�1
dx1

� @m�(
dm�

1

dx1
; m�

1) �1
o
dx1

+
X
n1

f(
� t jn1j
2w

)j�1;n1j2 � 2
X
n1

g(
� t jn1j
2w

)Re(�1;n1 m
�
1;n1)

=: T1 + T2 + T3 + T4:

We will show that the leading order term comes from T1, the �rst order correction
from T4 and that T2 and T3 are higher order. More precisely: In Proposition 1, we
have shown

T1 � 8 � exp(�w) (95)� 1

t
lnw:

In Lemma 10 we shall establish

0 � �T2 <� 1

t
ln t

(95)� 1

t
lnw:

It will follow from Lemma 8 that

T3 � 0:

We will show in Lemma 11 that

T4
>� �4 � 1

t
lnw;

for any �1 with the symmetry �1(x1 + w) = ��(x1). This yields the lower half of
(96):

min
m0

E(m0)� 8
>� �4 � 1

t
lnw:

In Lemma 12 and Lemma 13 we will construct a �1 with the symmetry �1(x1+w) =
��1(x1), �1(0) = 0, s. t.

T3
<� (

lnw

t
)2

(95)� 1

t
lnw

and

T4
<� �4 � 1

t
lnw:

This yields the upper half of (96). We now state and prove the lemmas. In the
sequel, we will drop the subscript \1".
Lemma 8 establishes a convexity property for the exchange energy integrand, which
is very useful for the lower bound.
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Lemma 8 We have

0 � �(p;m)� �(p�; m�)� @p�(p
�; m�) (p� p�)� @m�(p

�; m�) (m�m�)

� 2max

(
1

1�m2
;

1

1� (m�)2

)
(p� p�)2

+ 8max

(
1

1�m2
;

1

1� (m�)2

)3

max
n
p2; (p�)2

o
(m�m�)2:

Lemma 9 collects all the relevant properties of the thick{�lm N�eel wall.

Lemma 9 Consider the minimizer m� = cos �� of Ethick among all � with �(x +
w) = �(x) + �, normalized by ��(0) = 0. It satis�es

i)

m� = cos �� � 0 in (�w
2
;
w

2
)

ii) Z w

2

�w

2

m� dx

( �
�
)
�;

Z w

2

�w

2

jxjm� dx � 1

iii)

m�
n � (

2

w
)
1
2 � for all odd n with jnj � w; jm�

nj � (
2

w
)
1
2 �

iv)
1�m� � 1

2
x2

dm�

dx
� x

9=
; for jxj � 1

v)

m� <� exp(�jxj) for 1 � jxj � w

2

Lemma 10 shows that the true stray{�eld energy of the thick{�lm N�eel wall m�

deviates from its thick{�lm approximation by a term of lower order.

Lemma 10 X
n

g

 
� jnj t
2w

!
jm�

nj2 <� 1

t
ln t:

Lemma 11 bounds by below the correction in the stray{�eld energy due to a per-
turbation � of the thick{�lm N�ell wall m�. This yields the leading order in the
correction.

Lemma 11

X
n

f

 
� jnj t
2w

!
j�nj2 � 2

X
n

g

 
� jnj t
2w

!
Re(�nm�

n)
>� �4 � 1

t
lnw

for all � with �(x+ w) = ��(x).

37



We now introduce the upper bound construction m = m� + �. Consider � given by

�n =
1

t

8>>>>>>>><
>>>>>>>>:

(8w)
1
2

jnj for jnj � w

t

0 for
w

t
< jnj � w

�� w
7
2 lnw

jnj4 for w < jnj

9>>>>>>>>=
>>>>>>>>;

for n odd

and �n = 0 for n even, where � is chosen s. t.X
n

�n = 0:

Lemma 12 shows that the upper bound construction � realizes the leading order
correction of the stray{�eld energy from Lemma 11.

Lemma 12 The above � has the symmetries

�(x+ w) = ��(x); �(x) 2 IR and �(�x) = �(x) (99)

and satis�es

X
n

f

 
� jnj t
2w

!
j�nj2 � 2

X
n

g

 
� jnj t
2w

!
Re(�nm�

n)
<� �4 � 1

t
lnw:

In connection with Lemma 8, Lemma 13 shows that the correction in the exchange
energy for our upper bound construction � is of higher order.

Lemma 13 For the above � we have

i)

�(0) = 0;
d�

dx
(0) = 0

ii)

sup
(�w;w)

j�j + sup
(�w;w)

jd�
dx
j + sup

(�w;w)
jd

2�

dx2
j <� lnw

t

iii) Z w

�w
(
d�

dx
)2 dx

<�
 
lnw

t

!2

iv) We have jmj � 1 and

Z w

�w
max

(
1

1�m2
;

1

1� (m�)2

)
(
d�

dx
)2

+max

(
1

1�m2
;

1

1� (m�)2

)3

max

(
(
dm

dx
)2 ; (

dm�

dx
)2
)
�2 dx

<�
 
lnw

t

!2

where m = m� + �:
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Proof of Lemma 8

The �rst and second derivatives of � are given by

@p�(p;m) =
2

1�m2
p;

@m�(p;m) =
2m

(1�m2)2
p2;

@2pp�(p;m) =
2

1�m2
;

@2pm�(p;m) =
4m

(1�m2)2
p;

@2mm�(p;m) =

 
2

(1�m2)2
+

8m2

(1�m2)3

!
p2 =

2 + 6m2

(1�m2)3
p2:

Since
@2pp� � 0

and

detD2� = @2pp� @
2
mm�� (@2pm�)

2

� 2

1�m2

8m2

(1�m2)3
p2 �

 
4m

(1�m2)3
p

!2

= 0; (100)

the matrix D2� is positive semi{de�nite. Hence � is convex. This establishes the
�rst inequality of Lemma 8.

For the second inequality, we observe that

1

2

 
q

�

!
�D2�(p;m)

 
q

�

!
(100)

� @2pp�(p;m) q2 + @2mm�(p;m) �2

� 2

1�m2
q2 +

8 p2

(1�m2)3
�2

and

max
t2[0;1]

(
1

1� (tm+ (1� t)m�)2

)
� max

(
1

1�m2
;

1

1� (m�)2

)
;

max
t2[0;1]

(
(t p+ (1� t) p�)2

(1� (tm + (1� t)m�)2)3

)
� max

(
1

1�m2
;

1

1� (m�)2

)3

� max
n
p2; (p�)2

o
:

Proof of Lemma 9: According to (39) and (40) in the proof of Proposition 1 we
have the implicit formula for ��

Z ��(x)

0

1

(cos2 � + �2)
1
2

d� = x: (101)
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Recall also that � is implicitly determined by

Z �

2

0

1

(cos2 � + �2)
1
2

d� =
w

2
; (102)

and that

� � exp(�w
2
) � 1; (103)

c. f. (42) and (45). In view of the monotonicity of �� (c. f. (41)), this implies

��((�w
2
;
w

2
)) = (��

2
;
�

2
); (104)

which yields i).

We now tackle ii). We have

Z w

2

�w

2

cos �� dx
(39)
=

Z w

2

�w

2

cos ��

(cos2 �� + �2)
1
2

d��

dx
dx

(104)
=

Z �

2

��

2

cos �

(cos2 � + �2)
1
2

d�

8<
:

(103)�
�

9=
;

Z �

2

��

2

1 d� = �:

Similarly,

Z w

2

�w

2

jxj cos �� dx

(101)
=

Z w

2

�w

2

�����
Z ��

0

1

(cos2 '+ �2)
1
2

d'

����� cos �� dx
(39)
=

Z w

2

�w

2

�����
Z ��

0

1

(cos2 '+ �2)
1
2

d'

����� cos ��

(cos2 �� + �2)
1
2

d��

dx
dx

(104)
=

Z �

2

��

2

�����
Z �

0

1

(cos2 '+ �2)
1
2

d'

����� cos �

(cos2 � + �2)
1
2

d�

(103)�
Z �

2

��

2

�����
Z �

0

1

cos'
d'

����� d�
= 2

Z �

2

0

Z �

0

1

cos'
d' d�

= 2
Z �

2

0
(
�

2
� ')

1

cos'
d' � 1:

From ii) we now infer the statements iii) on the Fourier coeÆcients

m�
n =

1

(2w)
1
2

Z w

�w
ei � n

x

w m�(x) dx
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of m� = cos ��. The estimate is straight{forward: Since jm�j is w{periodic, we have

jm�
nj � 1

(2w)
1
2

Z w

�w
jm�(x)j dx

= (
2

w
)
1
2

Z w

2

�w

2

jm�(x)j dx
(i)
= (

2

w
)
1
2

Z w

2

�w

2

m�(x) dx

(ii)

� (
2

w
)
1
2 �:

The leading order scaling for the Fourier coeÆcients corresponding to

n odd; jnj � w (105)

is obtained as follows. Since for odd n, ei � n
x

w m�(x) is w{periodic, we have

m�
n = (

2

w
)
1
2

Z w

2

w

2

ei � n
x

w m�(x) dx

= (
2

w
)
1
2

(Z w

2

�w

2

m�(x) dx +
Z w

2

�w

2

(ei � n
x

w � 1)m�(x) dx

)
:

According to ii) we have Z w

2

�w

2

m�(x) dx � �:

According to i) and ii) we have�����
Z w

2

�w

2

(ei � n
x

w � 1)m�(x) dx

����� �
Z w

2

�w

2

j� n x
w
j jm�(x)j dx

(i)
= �

jnj
w

Z w

2

�w

2

jxjm�(x) dx

(ii)
<� jnj

w

(105)� 1:

The argument for iv) is easy: According to ��(0) = 0 and (39) we have

d��

dx
(0) = (1 + �2)

1
2

(103)� 1:

From this and ��(0) = 0 we obtain

m�(0) = cos ��(0) = 1;

dm�

dx
(0) = � sin ��(0)

d��

dx
(0) = 0;

d2m�

dx2
(0) = � cos ��(0)

 
d��

dx
(0)

!2

� sin ��(0)
d2��

dx2
(0) = �

 
d��

dx
(0)

!2

� �1:
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Since � � 1 is a regular perturbation of the equation (39) for ��, this implies that

1�m� � 1
2
x2

dm�

dx
� x

)
for jxj � 1

uniformly in w � 1.

We �nally address v): From (101) and (102) we conclude for 0 � x � w
2

w

2
� x =

Z �

2

��(x)

1

(cos2 � + �2)
1
2

d� �
Z �

2

��(x)

1

((�
2
� �)2 + �2)

1
2

d�

�
Z �

2

��(x)

1

(�
2
� �) + �

d�

= ln
�
1

�
(
�

2
� ��(x)) + 1

�
;

so that
1

�
(
�

2
� ��(x)) � exp(

w

2
� x):

According to (103), this implies

�

2
� ��(x) <� exp(�x): (106)

On the other hand, according to (104),

�

2
� ��(x) � 0 for 0 � x � w

2
:

Hence

0 � �

2
� ��(x)

(106)
<� exp(�x) � 1 for 1 � x � w

2
:

Hence �� � �
2
. Since cos � � �

2
� � for � � �

2
, we have

m�(x) = cos ��(x) � �

2
� ��(x)

(106)
<� exp(�x):

The claim of v) follows from the symmetry m�(�x) = m�(x), which can be read
o� (101).

Proof of Lemma 10:
We observe that

g(z) =
sinh(z)

z exp(z)
=

1

2 z
(1� exp(�2z)) �

8><
>:

1

1

2 z

9>=
>; :
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Hence we obtain the estimate

X
n

g

 
� jnj t
2w

!
jm�

nj2

<� X
jnj�w

t

jm�
nj2 +

w

t

X
jnj>w

t

1

jnj jm
�
nj2

=
X
jnj�w

t

jm�
nj2 +

w

t

X
w

t
<jnj�w

1

jnj jm
�
nj2 +

w

t

X
jnj>w

1

jnj jm
�
nj2:

We consider the three terms on the r. h. s. separately: According to Lemma 9 iii)
we have X

jnj�w

t

jm�
nj2 <� 1

w

X
jnj�w

t

1
<� 1

t
� 1

t
ln t

and
w

t

X
w

t
<jnj�w

1

jnj jm
�
nj2 <� 1

t

X
w

t
<jnj�w

1

jnj
<� 1

t
ln t:

For the last term we observe

w

t

X
jnj>w

1

jnj jm
�
nj2 <� 1

t

X
jnj>w

 
� jnj
w

!2

jm�
nj2

� 1

t

Z w

�w
(
dm�

dx
)2 dx

� 1

t

Z w

�w
(
d��

dx
)2 dx

<� 1

t
� 1

t
ln t:

Proof of Lemma 11:
We observe that also m� = cos �� obeys the symmetry

m�(x + w) = �m�(x):

On the level of Fourier coeÆcients, real functions with this symmetry are character-
ized by

��n = ��n and �n = 0 for n even: (107)

Minimizing the functional

X
n

f

 
� jnj t
2w

!
j�nj2 � 2

X
n

g

 
� jnj t
2w

!
Re(�nm�

n)

among all Fourier coeÆcients with (107), we obtain the Euler{Lagrange equation

f

 
� jnj t
2w

!
�n = g

 
� jnj t
2w

!
m�
n;
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since also m�
n satis�es (107). Hence we obtain the following expression for the

minimum

�X
n

(g2=f)

 
� jnj t
2w

!
jm�

nj2:

According to Lemma 9 iii),

X
n

(g2=f)

 
� jnj t
2w

!
jm�

nj2 �
2 �2

w

X
nodd

(g2=f)

 
� jnj t
2w

!
:

We observe that as a consequence of (8),

(g2=f)(z) �

8>>><
>>>:

1

z
for z � 1

1

4 z2
for z � 1

9>>>=
>>>;
;

so that the integral
R1
0 (g2=f)(z)dz diverges logarithmically at z = 0. Since t

w
� 1,

we therefore have

X
nodd

(g2=f)

 
� jnj t
2w

!
� 2w

� t
ln
w

t

w�t�1� 2w

� t
lnw:

Proof of Lemma 12:

The symmetries (99) follow from the following symmetries

��n = ��n = �n and �n = 0 for even n

of the Fourier coeÆcients. We start by arguing that

� � 3
p
8 � 1: (108)

Indeed, � is de�ned via

�
X
jnj>w

n odd

w3 lnw

jnj4 =
X

jnj�w
t

nodd

p
8

jnj :

The leading order (108) of � now follows from

X
jnj>w

n odd

1

jnj4
w�1�

Z 1

w

1

z4
dz =

1

3

1

w3
;

X
jnj�w

t

nodd

1

jnj
w�t�

Z w

t

1

1

z
dz = ln

w

t

w�t�1� lnw:
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For the estimate itself, we shall establish

1

2

X
jnj�w

t

f

 
� jnj t
2w

!
j�nj2 <� 2 �

1

t
lnw; (109)

X
jnj�w

t

g

 
� jnj t
2w

!
Re(�n �m�

n) � 4 �
1

t
lnw; (110)

X
jnj>w

f

 
� jnj t
2w

!
j�nj2 <� (

1

t
lnw)2; (111)

������
X
jnj>w

g

 
� jnj t
2w

!
Re(�n �m�

n)

������
<� 1

t2
lnw: (112)

We observe that thanks to 1
t
lnw � 1 and t � 1, the terms (111) and (112) are

of higher order.

We start with (109). We observe

f(z) � z for all z; (113)

which can be seen by writing

f(z) = 1� 1

2 z
(1� exp(�2 z))

and using

exp(�w) � 1� w +
1

2
w2 for all w � 0:

We now have

1

2

X
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t

f

 
� jnj t
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!
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(113)

� 1

2

X
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t
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� jnj t
2w

0
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t

(8w)
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1
2

1
A

2
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t

X
jnj�w

t
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1
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w�t� 2 �

t
ln
w

t
w�t�1� 2 �

t
lnw:

We now address (110). Since t � 1 and thus w
t
� w, we have according to Lemma

9 iii)

m�
n � (

2

w
)
1
2 � for all jnj � w

t
; n odd:

Therefore
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!
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t
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w
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Since

g(z)
1

z
� 1

z
for z � 1;

the integral
R1
0 g(z) 1

z
dz diverges logarithmically at z = 0. Therefore we obtain

because of t
w
� 1:

X
jnj�w

t
;n odd
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� t jnj
2w

!
2w

� jnj t � 2w

� t
ln
w

t

w�t�1� 2w

� t
lnw:

Hence as desired X
jnj�w

t

g

 
� jnj t
2w

!
Re(�n �m�

n) �
4 �

t
lnw:

We now estimate the term (111):

X
jnj>w

f

 
� jnj t
2w

!
j�nj2

(108)
<� w7 ln2w

t2
X
jnj>w

f

 
� jnj t
2w

!
1

jnj8
f�1
<� w7 ln2w

t2
X
jnj>w

1

jnj8
w�1
<� w7 ln2w

t2

Z 1

w

1

z8
dz

<� (
lnw

t
)2:

We �nally address (112). We use

g(z) � 1

z
for all z (114)

and Lemma 9 iii) in form of

jm�
nj <� 1

w
1
2

: (115)

We have ������
X
jnj>w

g

 
� jnj t
2w

!
Re(�nm

�
n)

������
(108)
<� w

7
2 lnw

t

X
jnj>w

g

 
� jnj t
2w

!
1

jnj4 jm
�
nj

(114);(115)
<� w4 lnw

t2
X
jnj>w

1

jnj5
w�1
<� w4 lnw

t2

Z 1

w

1

z5
dz

<� lnw

t2
:
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Proof of Lemma 13:
By de�nition of �, we have

�(0) =
1

(2w)
1
2

X
n

�n = 0:

Furthermore, d�
dx
(0) = 0 follows from the symmetry

�(�x) = �(x):

This establishes i).

We now address ii). In terms of the Fourier coeÆcients, ii) follows from

1

(2w)
1
2

X
n

j�nj + 1

(2w)
1
2

X
n

� jnj
w

j�nj + 1

(2w)
1
2

X
n

 
� jnj
w

!2

j�nj <� lnw

t
;

which amounts to

1

w
1
2

X
jnj�w

j�nj <� lnw

t
and

1

w
1
2

X
jnj>w

 jnj
w

!2

j�nj <� lnw

t
:

This is indeed the case:

1

w
1
2

X
jnj�w

j�nj <� 1

t

X
jnj�w

1

jnj
w�1
<� lnw

t

and

1

w
1
2

X
jnj>w

 jnj
w

!2

j�nj =
1

w
5
2

X
jnj>w

jnj2 j�nj

(108)
<� w lnw

t

X
jnj>w

1

jnj2
w�1
<� lnw

t
:

Part iii) follows from

Z w

�w
(
d�

dx
)2 dx =

X
n

 
� jnj
w

!2

j�nj2

(108)
<� 1

t2 w

X
jnj�w

t

1 +
w5 ln2w

t2
X
jnj>w

1

jnj6
w�1
<� 1
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lnw

t
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lnw

t
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:
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We �nally tackle iv). According to Lemma 9 iv)

8>><
>>:

1�m� � 1

2
x2

dm�

dx
� x

9>>=
>>; for jxj � 1: (116)

According to parts i) and ii) of this lemma

j�j <� lnw

t
x2

jd�
dx
j <� lnw

t
x

9>>=
>>; : (117)

Since lnw � t, this implies in particular

1�m � 1

2
x2

dm

dx
� x

9>>=
>>; for jxj � 1: (118)

We conclude from (116), (117) & (118):

max

(
1

1�m2
;

1

1� (m�)2

)
(
d�

dx
)2

+max

(
1

1�m2
;

1

1� (m�)2

)3

max

(
(
dm

dx
)2; (

dm�

dx
)2
)
�2

<� (
lnw

t
)2 for jxj � 1: (119)

This deals with the small jxj{values.
For the large jxj-values we observe that according to Lemma 9 i) and v)

jm�j <� exp(�jxj) for 1 � jxj � w

2
:

On the other hand, we obtain from (116) and the monotonicity (41) that also

jm�j � c0 < 1 for jxj � 1:

Together with part ii) of this lemma, i. e.

j�j <� lnw

t
� 1;

we conclude

max

(
1

1�m2
;

1

1� (m�)2

)
<� 1 for 1

<� jxj � w

2
:
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Thus

max

(
1

1�m2
;

1

1� (m�)2

)
(
d�

dx
)2

+max

(
1

1�m2
;

1

1� (m�)2

)3

max

(
(
dm
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)2; (

dm�

dx
)2
)
�2

<� (
d�

dx
)2 + (

lnw

t
)2max

(
(
dm

dx
)2; (

dm�

dx
)2
)

lnw�t
<� (

d�

dx
)2 + (

lnw

t
)2 (

dm�

dx
)2

� (
d�

dx
)2 + (

lnw

t
)2 (

d��

dx
)2 for 1

<� jxj � w

2
: (120)

From (119) and (120) we obtain

Z w

2

�w

2

n
max

(
1

1�m2
;

1

1� (m�)2

)
(
d�

dx
)2
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(
1
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;

1
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(
(
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dx
)2; (

dm�
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)
�2
o
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lnw
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1 +

Z w

2

�w

2

(
d��

dx
)2 dx

!
+
Z w

2

�w

2

(
d�

dx
)2 dx:

We now conclude by evoking Proposition 1, which yields
R w

2
�w

2
(d�

�

dx
)2 dx

<� 1, and

part iii) of this lemma.
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