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rchimedes (c. 287 B.C. to 212/211 B.C.) lived in the Greek city-state of 
Syracuse, Sicily, up to the time that it was conquered by the Romans, a 
conquest that led to his death. Of his works that survive, the second of his 
two books of On Floating Bodies1 is considered his most mature work, 

commonly described as a tour de force [6, 15]. This book contains a detailed 
investigation of the stable equilibrium positions of floating right paraboloids2 of various 
shapes and relative densities, but restricted to the case when the base of the paraboloid 
lies either entirely above or entirely below the fluid surface.  

a 
  

This paper summarizes the results of research in which I completed Archimedes’s 
investigation to include also the more complex cases when the base of the floating 
paraboloid is partially submerged. Modern scientific computing and computer graphics 
enabled me to construct a three-dimensional surface that summarizes all possible 
equilibrium positions (both stable and unstable) for all possible shapes and relative 
densities. This equilibrium surface contains folds and cusps that explain certain 
catastrophic phenomena—for example, the sudden tumbling of a melting iceberg or the 
toppling of a tall structure due to liquefaction of the ground beneath it—that have long 
been observed but not previously explained fully. 
 
Books I and II 

Book I of On Floating Bodies begins with a derivation of Archimedes’s Law of 
Buoyancy from more fundamental principles and finishes with a simple, elegant 
geometric proof that a floating segment of a homogeneous solid sphere is always in 
stable equilibrium when its base is parallel to the surface of the fluid, either above the 
fluid surface or below it. Book I introduced the concept of fluid pressure and initiated 
the science of hydrostatics. It took almost eighteen centuries before this work on the 
nature of fluids was continued by such scientists as Simon Stevin (Dutch, 1548-1620), 
Galileo Galilei (Italian, 1564-1642), Evangelista Torricelli (Italian, 1608-1647), Blaise 
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Figure 1. (A and B) Two views of a floating right paraboloid with φ= 67º, s = 0.08 and 
θ =38.95º in equilibrium according to Archimedes’s Proposition 8. (C) The paraboloid has 
been rotated clockwise from this equilibrium position while keeping the weight of the 
displaced fluid equal to the weight of the paraboloid. 

Pascal (French, 1623-1662), and Isaac Newton (English, 1642-1727). In the interim, 
Book I served mainly as the basis for determining the density of objects, such as 
gemstones and precious-metal artifacts, by comparing their weights in air and in water. 
 

In Book II Archimedes extended his stability analysis of floating bodies from a 
segment of a sphere to a right paraboloid.  However, Book II contained many 
sophisticated ideas and complex geometric constructions and did not have the appeal of 
Book I. Only after Greek geometry was augmented with algebra, trigonometry, and 
analytical geometry and the field of mechanics reached the maturity to handle the 
concepts of equilibrium and stability that Archimedes introduced was Book II seriously 
studied. It then became the standard starting point for scientists and naval architects 
examining the stability of ships and other floating bodies3.  

 
To describe the results Archimedes obtained in Book II let us first precisely define 

his object of study: 
 

Definition: A paraboloid is a homogeneous solid convex object bounded by a 
surface obtained by rotating a parabola about its axis of symmetry and by a plane 
that is not parallel to the parabola’s axis of symmetry. If the plane is perpendicular 
to the axis of symmetry it is called a right paraboloid, otherwise it is called an 
oblique paraboloid. The planar portion of the surface, which is either circular or 
elliptical, is called the base of the paraboloid. 

 
Let R be the radius of the base of a right paraboloid and let H be its height (Fig. 1A). 
Define its base angle φ as the angle between 0º and 90º for which RH2tan =φ . In a 
profile view of the paraboloid it is the angle between its base and the tangent line to the 
parabolic cross section at the base (Fig. 1B).  This base angle determines the shape of 
the parabola. Next, let    be the mass-density of the paraboloid and let    be the 
mass-density of the fluid in which it is floating within a uniform gravitational field. 
Following Archimedes, let us neglect the density of the air above the fluid

ρbody ρ fluid

4 and define 
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Proposition 8 of Book II of Archimedes’s 
On Floating Bodies 

 
The following statements and diagram appear in the proof of Proposition 8: 

1. Β∆ is equal to the axis.    
2. ΒΚ is twice Κ∆.  
3. ΚΡ is equal to the line-up-to-the-axis.  
4. The weight of the body is to that of the fluid [of equal volume] as the square of side ΦΖ is to that of side Β∆. 
5. ΦΧ is twice ΧΖ. 
6. ΦΧ is equal to ΡΨ. 
7. The square of side ΨΕ is half of the rectangle of sides ΚΡ and ΒΨ.

 

Β Ψ Ρ Κ ∆

ΖΧΦΕ

 
 
These statements describe a compass-and-straightedge construction beginning with: 
 

1. The “axis” of the paraboloid. This is a line segment of length H, the height of the paraboloid. 
2. The “line-up-to-the-axis”. This is the semilatus rectum of the paraboloid, which is a line segment of length R2/2H, where R is 

the radius of the base of the paraboloid. Alternatively, we could begin with a line segment of length R and construct the line-
up-to-the-axis. 

3.  The magnitude s. This is the ratio of the weight of the paraboloid to that of an equal volume of fluid. Floating the paraboloid in 
the fluid vertically with the base up, we have that s = (h/H)2, where h is the height of the submerged portion of the paraboloid. 
The line segment ΦΖ in the diagram has length h. 

 
Archimedes shows that the paraboloid’s angle of inclination (the angle its axis makes with the surface of the fluid) is angle ΕΒΨ. The 
complementary angle ΒΕΨ is my tilt angle θ. Using algebraic notation, where AB appearing in an equation represents the length of the 
corresponding line segment, the seven statements above become 
 

1. Β∆ = H   
2. ΒΚ = 2(Κ∆) 
3. ΚΡ = R2/2H 
4. s = (ΦΖ/Β∆)2 
5. ΦΧ = 2(ΧΖ) 
6. ΦΧ = ΡΨ 
7. ΨΕ2 = (ΚΡ)(ΒΨ)/2 
 

 From Eqs. 1-7 and the fact that the base angle φ of the paraboloid satisfies tan φ = 2H/R, we obtain 
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the relative density (or specific gravity) of the paraboloid as  s =ρ body ρ fluid , which is a 
number in the interval [0, 1] for a floating paraboloid. Finally, let θ be the tilt angle (or 
heel angle), by which is meant the angle of inclination in the interval [0º, 180º] of the 
axis of the paraboloid from the vertical with 0º corresponding to the base above the 
fluid level (Fig. 1B). As with Archimedes, let us confine the rotation of the paraboloid 
so that its axis always lies in a fixed vertical plane. 
 

Below is an example of one of the ten propositions in Book II, in which I first give 
a very literal translation of the Greek text [22] and then a very liberal modern 
translation. In the literal translation the ‘axis’ is a line segment whose length is the 
height H of the paraboloid and the ‘line-up-to-the-axis’ is the semilatus rectum of the 
paraboloid, which is a line segment of length R2/2H. The last sentence in my translation 
actually consists of seven excerpts from the beginning of the proof of Proposition 8 
where a geometric construction is described. 
 
Archimedes’s Proposition 8. Literal Translation: 
 

A right segment of a right-angled conoid, when its axis is greater than one-and-a-half times 
the line-up-to-the-axis, but small enough so that its ratio to the line-up-to-the-axis is less 
than fifteen to four, and when further its weight has to that of the fluid [of equal volume] a 
ratio less than that which the square of the amount by which the axis exceeds one-and-a-
half times the line-up-to-the-axis bears to the square of the axis, will, when so placed in the 
fluid that the base does not touch the surface of the fluid, not return to the vertical position 
and not remain in the inclined position except when its axis makes with the surface of the 
fluid a certain angle to be described. [This angle is ΕΒΨ in the diagram (Fig. 2) in which] 
(1) Β∆ is equal to the axis; (2) ΒΚ is twice Κ∆; (3) ΚΡ is equal to the line-up-to-the-axis; 
(4) the weight of the body is to that of the fluid [of equal volume] as the square of side ΦΖ 
is to that of side Β∆; (5) ΦΧ is twice ΧΖ; (6) ΦΧ is equal to ΡΨ; and (7) the square of side 
ΨΕ is half of the rectangle of sides ΚΡ and ΒΨ. 

 

 
 
Figure 2. Diagram for the statement of Proposition 8, scaled for the paraboloid in Figure 1. 
 
 

Archimedes’s Proposition 8. Modern Translation: 
 

A right paraboloid whose base angle φ satisfies  and whose 

relative density s satisfies 

2/15tan3 2 <φ<

( )22cot31 φ−<s  has precisely one stable equilibrium 
position with its base completely above the fluid surface. The corresponding tilt 

angle is ( ) 2tan1
3
2tan 21 −φ−=θ − s . 
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Archimedes’s objective in Proposition 8 was to describe a geometric construction using 

compass and straightedge that begins with three lines segments describing the shape and 
relative density of the paraboloid (the axis, the line-up-to-the-axis, and the line segment ΦΖ 
whose length is Hs ) and ends with a diagram in which the tilt angle is revealed. My 
objective in the modern translation, however, was to summarize the geometric construction in 
a single analytical expression in which the equilibrium tilt angle θ is expressed as an explicit 
function of s and φ. My modern translation incorporates centuries of algebraic, trigonometric, 
and analytical developments and considerably alters how the Greeks would have grasped 
Archimedes’s results. It also shows the limitations of Greek geometry in formulating and 
describing complicated physical phenomena. 

 
Archimedes’s other propositions in Book II complete his study of the stable 

equilibrium tilt angles when the base is either completely above or completely below 
the fluid surface for appropriate values of the base angle and the relative density. The 
main geometric tools he used were the formulas for the volumes and centroids of right 
and oblique paraboloids, formulas that he himself derived in other works5. The 
mechanical tools he used—again, tools that he himself first formulated—were his Law 
of Buoyancy for a floating body, his Law of the Lever, and the equilibrium condition 
that the center of gravity of the floating body must lie on the same vertical line as its 
center of buoyancy. (Because a paraboloid is a homogeneous convex body, its center of 
buoyancy coincides with the center of gravity of its submerged portion.) 
 
Righting and Energy Arms 
The numerical techniques I used required the evaluation of the moment acting on an 
unbalanced floating paraboloid. In Figure 1C a right paraboloid is floating in a fluid 
with the weight of the displaced fluid equal to the weight of the right paraboloid. 
However, it is not in equilibrium because the center of gravity G of the body is not on 
the same vertical line as its center of buoyancy B. Rather, the weight of the paraboloid 
and the buoyancy force form a couple that will cause the paraboloid to rotate in a 
counterclockwise direction toward the equilibrium position shown in Figure 1B. The 
value of the couple, called the righting moment, is the weight of the paraboloid times 
the horizontal displacement GZ between G and B, taken as positive if B is to the right 
of G. This horizontal displacement is called the righting arm and its use is preferred by 
naval architects to the righting moment. If a wave causes a ship to heel, the righting-
arm expressed as a function of the heel angle affects the dynamics of how the ship will 
return to its vertical equilibrium orientation. One of the standard specifications of a ship 
is a graph of its righting arm for a wide range of heel angles. 
 

If the base is completely above or below the fluid surface, it is possible to determine 
an exact expression for the righting arm of a floating right paraboloid using the exact 
formulas for the volume and centroid of an oblique paraboloid. For example, if the base 
is above the fluid surface then  
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Setting this equal to zero determines all equilibrium tilt angles with the base above the 
fluid surface and, in particular, returns the expression for the tilt angle determined by 
Archimedes’s Proposition 8 above. When the base is completely submerged, symmetry 
principles can be used to obtain an analogous expression6.  
 

While the righting arm provides the necessary information for the stability analysis 
of a floating body, its potential energy also provides some insight. Taking the fluid 
surface as the level of zero potential energy, the potential energy of the paraboloid/fluid 
system is the sum of the potential energy of the paraboloid and the potential energy of 
the displaced fluid. The potential energy of the paraboloid is its weight multiplied by 
the height of its center of gravity G above the fluid surface. Likewise, the potential 
energy of the displaced fluid is its weight (the same as the weight of the paraboloid) 
multiplied by the distance of its center of gravity B below the fluid surface. The total 
potential energy is then the weight of the paraboloid multiplied by the vertical distance 
between B and G. For a homogeneous convex paraboloid, G will always lie above B if 
the relative density is less than one and so the potential energy will always be positive. 

 
By analogy with the term ‘righting arm’ I shall call the vertical displacement from 

B to G (BZ in Figure 1C) the energy arm of the floating paraboloid. The fundamental 
relationship between force and energy shows that when the righting arm and energy 
arm are expressed as functions of the tilt angle θ then 
 

(2) arm rightingarm)energy (
=

θd
d .  

 
In order to work with dimensionless units, let us divide both the righting arm and the 
energy arm by the height H of the paraboloid. Thus one unit of the normalized energy 
arm is the energy needed to raise the paraboloid in air a distance equal to its height. 
 

Figure 3 is an example of the normalized righting arm and the normalized energy 
arm as a function of the tilt angle for a right paraboloid with base angle 74.330º and 
relative density 0.510. When its base is above the fluid surface (0° ≤ θ ≤ 28.2°) I used 
Eq. (1) and when the base is below the fluid surface (151.0° ≤ θ ≤ 180°) a similar exact 
expression was used. 

 
When the base is cut by the fluid surface I used numerical integration to determine the 
volume and first moments of the unsubmerged portion of the paraboloid, from which 
the center of buoyancy and resulting righting-arm and righting-arm curves were 
determined7. The six roots of this righting-arm curve, or, equivalently, the six stationary 
points of the energy-arm curve, determine the six equilibrium positions of the 
corresponding paraboloid.  
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Figure 3. (Top) The normalized righting-arm curve of a paraboloid with base angle 
74.330º and relative density 0.510. (Middle) The normalized energy-arm curve of the 
paraboloid. (Bottom) The six equilibrium configurations of the paraboloid determined by 
the roots of the righting-arm curve (or the stationary values of the energy-arm curve) 
together with their stability classifications (AS, US, or NS). The base is partially 
submerged if 28.2º ≤ θ ≤ 151.0º. 
 

Because a positive righting arm produces a counterclockwise rotation and a 
negative righting arm produces a clockwise rotation, the way in which the algebraic 
sign changes through a root determines the stability classification of the corresponding 
equilibrium configuration. In particular, a root is asymptotically stable (AS), neutrally 
stable to first order (NS), or unstable (US) if the slope of the righting curve at the root 
is positive, zero, or negative, respectively8. None of the six equilibrium positions for 
the particular paraboloid described in Figure 3 were present in Archimedes’s studies 
since they are either unstable or correspond to the base being cut by the fluid surface. 
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Archimedes’s Results 

Figure 4.  Archimedes’s results in graphical form. Each point on the surface identifies an 
AS equilibrium configuration of the paraboloid in which the base is not cut by the fluid 
surface. Typical configurations are shown for different parts of the surface. The red 
curves identify those limiting configurations in which the base touches the fluid at one 
point. 
 

Let us next summarize Archimedes’s results in Book II in graphical form. In Figure 4 I 
have plotted a surface in (φ, s, θ)-space in the region [0°, 90°] x [0, 1] x [0°, 180°] in 
which each point identifies a combination of base angle, relative density, and tilt angle 
for an AS equilibrium configuration of a paraboloid whose base in not cut by the fluid 
surface. The bottom portion of this equilibrium surface is associated with the base lying 
above the fluid surface and the top portion with the base lying below the fluid surface. 
Because of certain symmetry considerations6 the top portion of the equilibrium surface 
is a rotation of its bottom portion about the line s = 1/2 and θ = 90°. 
 

The curved piece of the bottom portion of the equilibrium surface, as partially 
determined by Archimedes’s Proposition 8 above, has the explicit equation 
 

(3)  ( ) 2tan1
3
2tan 21 −φ−=θ − s  

 
restricted to the appropriate domain in φ and s. This curved surface is delineated below 
by its intersection with the plane θ = 0° and this delineation identifies those 
configurations in which the paraboloid starts tilting from a vertical AS configuration.  
The curved surface is delineated above by the bottom red curve in Figure 4, which 
marks those configurations when the base of the paraboloid touches the fluid surface at 
precisely one point. In Proposition 10 of On Floating Bodies II, Archimedes developed 
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a complicated geometric construction to determine these configurations. His geometric 
construction is so ingenious as to warrant Cicero’s assessment of him as being 
“endowed with greater genius that one would imagine it possible for a human being to 
possess” [17]. 
 

In modern analytical notation Archimedes’s geometric construction for the bottom 
red curve is given by the following equations: 
 

(4) 
4
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where at θ = 90° the limiting values s = 1/625 and φ = 90° are taken.  
 

For the upper surface corresponding equations can be obtained by replacing s by 1 – 
s and θ by 180° − θ in Eqs. (3) and (4). 
 

It should again be emphasized that Figure 4 and its analytical descriptions in Eqs. 
(3) and (4) are quite alien to Greek mathematics. As in the literal translation of 
Proposition 8, Archimedes could only express his complete results in convoluted 
sentences and complicated geometric constructions. 

 
 

Complete Equilibrium Surface  
My own research involved completing the equilibrium surface in Figure 4 by 
appending those points corresponding to AS configurations in which the base is cut by 
the fluid surface and also all points corresponding to US and NS configurations. The 
result is shown in Figure 5. 
 

The construction of Figure 5 required determining all of the roots of the righting 
arm curves for a large number of base angles and relative densities using numerical 
techniques. The base angle φ turned out to be a single-valued function of s in [0,1] and 
θ in (0°, 90°).  I used this fact, together with the rotational symmetry, to explicitly plot 
the surface. That is, rather that compute and plot θ as a multiple-valued function of φ 
and s, I computed and plotted φ as a single-valued function of s and θ for all s in [0, 1] 
and all θ other than 0°, 90°, and 180°. For those three exceptional values of θ I used the 
facts that (1) the entire planes θ = 0° and θ = 180° are part of the equilibrium surface, 
indicating that the right paraboloid is always in equilibrium when its axis of symmetry 
is vertical, and (2) the cross section of the equilibrium surface at θ = 90° consists of the 
three line segments {s=1/2, θ=90°}, where the paraboloid is on its side half in and half 
out of the fluid; {φ =0°, θ =90°}, where the paraboloid has collapsed to a circular disk; 
and {φ=90°, θ =90°}, where the paraboloid has collapsed to a line segment. 
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Figure 5.  (Top) The complete equilibrium surface of a floating paraboloid with the 
equilibrium tilt angles θ plotted against the base angle φ and the relative density s. The 
AS points are in blue and the US points are in gray. The NS points lie on the winding 
curve separating the two regions. The yellow vertical line cuts through the six equilibrium 
points in Figure 3. The red vertical line to the right is the jump (b to c) in Figure 8 
associated with a tumbling iceberg and the red vertical line to the left is the jump (c to d) 
in Figure 9 associated with a toppling structure. (Bottom) Stereoview of the equilibrium 
surface. 



The curved portion of the equilibrium surface resembles three-fourths of a turn of a 
helical surface, which is, appropriately enough, also the shape of an Archimedes screw. 
However, the axis of the helical surface is distorted. It is about this distorted axis, near 
the vertical line {φ =74°, s=1/2}, that one finds up to seven distinct values of the tilt 
angle for fixed values of φ and s and a variety of complicated equilibria transitions. 
 

The equilibrium surface is colored with the AS points in blue, the US points in 
gray, and the NS points in black. The NS points lie on one continuous curve that 
separates the equilibrium surface into AS and US pieces. On the plane θ=0° the curve 
of NS points has the equation ( )22cot31 φ−=s , which Archimedes had previously 
identified as the limiting condition for a vertical stable equilibrium (cf., Proposition 8). 
By symmetry, a similar curve lies on the plane θ=180°.   
 

To determine the stability of each nonvertical equilibrium, I determined the 
algebraic sign of the slope of the corresponding righting curve at the corresponding 
root. When the fluid level does not cut the base, Archimedes’s results are applicable. 
When the base is cut by the fluid level, the algebraic sign can be determined by 
computing the ratio of the two principal moments of inertia of the cross section of the 
intersection of the paraboloid with the fluid surface [12]. The cross section in this case 
is a right segment of an ellipse and I determined its principal moments of inertia using 
exact formulas.  
 

For base angles of less than 60° the right paraboloid has the same floating 
characteristics as the spherical segment that Archimedes studied in Book I: namely, for 
any relative density it floats stably at the vertical tilt angles 0° and 180° and unstably at 
a tilt angle close to 90°. I shall refer to this as plate-like behavior, in contrast to the rod-
like behavior when the base angle of the paraboloid is close to 90°. In the latter case the 
paraboloid floats unstably at 0° and 180° for most densities and floats stably at a tilt 
angle close to 90°, when it is lying on its side. Because plate-like and rod-like 
paraboloids float in totally different ways, the transition between the two shapes 
produces a complicated equilibrium surface with correspondingly complicated floating 
behaviors.  
 

The NS points on the curved portion of the equilibrium surface lie along the edge of 
a helical fold that leads to catastrophic transitions between two equilibria as the base 
angle and/or the relative density of the floating paraboloid changes. These NS points 
identify saddle-node bifurcations where an US point and an AS point meet and 
annihilate each other, forming a fold catastrophe. If the parameters of a floating 
paraboloid change in such a way as to pass over a fold, the equilibrium configuration 
will jump catastrophically from the NS point on the fold to an AS point lying on the 
vertical line through the NS point. The NS points on the curved portion of the 
equilibrium surface and the corresponding fold catastrophes arise only when the base of 
the paraboloid is partially submerged and so did not enter into Archimedes’s 
consideration.  
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Figure 6 (Left) The projection of a portion of the curve of fold catastrophes onto the φs
plane. Its three cusps identify three cusp catastrophes at tilt angles of 60.0°, 90°, and 
120.0°. (Right) An oblique view of the topmost cusp catastrophe at θ=120.0°. 
 
 

sp Catastrophes, Bifurcations, and Hysteresis Loops 

ure 6(left) is a projection of a portion of the curve of fold catastrophes onto the φs-
ne. Although this curve is smooth in three-dimensional space, its two-dimensional 
jection has three cusps. These cusps identify three cusp catastrophes at (φ, s, θ)-
ues of (74.19°, 0.467, 60.0°), (73.68°, 1/2, 90°), and (74.19°, 0.533, 120.0°). These 
 points where the equilibrium surface folds over and locally changes from a single-
ue function of θ to a triple-valued function. Figure 6(right) is an oblique view of the 
most cusp catastrophe illustrating this folding behavior. Within the diamond-shaped 
ion in Figure 6(left) outlined on the left by the three cusps, the equilibrium surface 
 seven tilt-angle values, including two US values of 0° and 180°. 

Figure 7 contains twelve slices of the equilibrium surface for fixed values of the tilt 
le, base angle, and relative density. These slices exhibit the complicated geometric 
ure of the equilibrium surface, which leads to complicated changes in the 
ilibrium position of the paraboloid as its base angle or relative density changes. 
ures 7A to 7D illustrate the fact that φ is a single-valued function of s for all 
etween 0º and 180º other than 90º. Figures 7E to 7H exhibit pitchfork bifurcations at 
qual to 0º and 180º and show the bifurcations associated with the passing of the slice 
ough the cusp catastrophe at a base angle of 73.682° ( 335tan 1−= ) between 
ures 7E and 7F. In Figure 7G the slice passes through the two cusp catastrophes at 
 angles of 60.0º and 120.0º producing two more pitchfork bifurcations. 
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Figure 7. Slices of the equilibrium surface. The black curves are AS points, the gray 
curves are US points, and the black dots are NS points. A hysteresis loop (a through d) is 
shown in (J) and the common vertical line in (H) and (L) cuts through the six equilibrium 
tilt angles described in Figure 3. 
 

Figures 7I to 7L show passages through the three cusp catastrophes using slices of 
constant relative density. Within the slice at s = 1/2 (Fig. 7K) the cross-section of the 
cusp at θ = 90º appears as a subcritical pitchfork bifurcation [13]. 

 
Small hysteresis loops appear in the s-slices for s between 0.467 and 0.500 

associated with the cusp at θ = 60.0º and for s between 0.500 and 0.533 associated with 
the cusp θ = 120.0º. Figure 7J highlights the loop for s = 0.499. The paraboloid flips 
catastrophically about this loop between the two orientations (a) and (c) in a periodic 
manner as the base angle oscillates between the values 73.8º and 74.4º, a change of 
only 0.6º. As the base angle goes through one oscillation the tilt angle continuously 
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increases from 29.0º to 43.3º (a to b), then jumps to 89.6º (b to c), then decreases 
continuously to 86.6º (c to d), and finally returns catastrophically to 29.0º (d to a). 
 

The vertical lines in Figures 7H and 7L are at s = 0.510 and φ = 74.330º, 
respectively, and pass through the six tilt angles shown in Figure 3. A slight increase in 
either the relative density or the base angle from these values cause the structurally 
unstable NS point at θ =131.5º to be annihilated, while a slight decrease causes it to 
split into an AS-US pair. 
 
 
Tumbling of icebergs due to melting 
Icebergs are notoriously unstable and may tumble over for no apparent reason [2, 3, 
20]. Jules Verne gave an explanation of this phenomenon in his 1870 novel 20,000 
Leagues Under the Sea. After a tumbling iceberg strikes the Nautilus, Captain Nemo 
explains, “An enormous block of ice; a mountain turned over. When icebergs are 
undermined by warmer waters or by repeated collisions, their center of gravity rises, 
with the result that they overturn completely” [21]. 
 

Figure 8 quantifies this phenomenon for a paraboloidal iceberg with uniform 
relative density of 0.9 melting in such a way that its base angle slowly increases (i.e., it 
gets narrower9). The cross-section of the equilibrium surface at this relative density 
shows that for base angles less that 82.54º the iceberg can float stably in a vertical 
orientation with its base above water (a). As its base angle slowly melts from 82.54º to 
82.65º, its tilt angle slowly increases from 0º to 12.3º (a to b), and then suffers a 
catastrophic jump to 98.1º when the base angle increases past 82.65º (b to c).  

 
The paraboloidal iceberg will tumble, rather than gradually roll over, only if its 

relative density is greater than 0.467 (Figures 8I and 8J). The tumbling then takes place 
almost immediately after the base cuts the fluid surface. 

Figure 8. A paraboloidal iceberg of relative density 0.9 tumbles over as it melts and its 
base angle passes through 82.65º (b to c). 
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iquefies and the relative density of the structure passes through 0.186 (c to d). 
ppling of structures due to soil liquefaction 
ring an earthquake loose, water-saturated soil can behave like a viscous fluid, a 
nomenon known as soil liquefaction. Structures originally supported by the soil 
in to float on it when it liquefies and can then sink and topple as the density of the 
efied soil decreases.  

Figure 9 illustrates this phenomenon for a paraboloidal structure with a base angle 
0º initially standing vertically on solid ground at a tilt angle of 180º (a). Let us 
sider solid ground as a liquid with infinite density, so that the relative density of the 
cture is zero. As the ground liquefies its density slowly decreases from infinity 
ugh large finite values and the relative density of the structure increases from zero 
ugh small finite values. The cross-section of the equilibrium surface at a base angle 
0º shows that as the relative density of the structure increases from 0 to 0.177 the 
cture slowly sinks into the ground in a vertical position (a to b), then starts to 

wly tilt until it reaches a tilt angle of 162.6º at a relative density of 0.187 (b to c), at 
ich point its base is barely above ground. If the relative density increases further, the 
cture topples catastrophically to a tilt angle of 79.9º (c to d). This toppling is 
versible. If the soil returns to its solid state, the structure, if still in one piece, ends 
at a tilt angle of 77.2º (d to e). 

As with the iceberg, the paraboloidal structure cannot topple until its base is 
tially exposed above the soil level. Additionally, this toppling can only occur if the 
e angle of the structure is greater that 74.194º (cf., Fig. 7G). For smaller base angles 
 paraboloidal structure gradually sinks and tilts into the soil without toppling as the 
l’s density decreases. 

– 15 – 



 
Conclusion  
One need only glance at Archimedes’s Proposition 8 above to see that On Floating 
Bodies is several orders of magnitude more sophisticated than anything else found in 
ancient mathematics. It ranks with Newton’s Principia Mathematica as a work in 
which basic physical laws are both formulated and accompanied by superb 
applications.  

 
However, Archimedes’s investigation of floating paraboloids had to await the 

computer age for its continuation, just as did his famous Cattle Problem [24]. This latter 
problem has an integer solution with more than 200,000 digits that needed modern 
computers to determine. Likewise, I needed advanced computing and graphics systems 
to determine all possible equilibrium positions of Archimedes’s floating paraboloids 
and to represent them in a single diagram. 

 
No doubt Archimedes would have been interested in seeing the results in this paper, 

but one could ask how much of the mathematics developed in the last two millennia he 
would need to learn to understand them. At the very least he would have to learn about 
three-dimensional Cartesian coordinate systems, although he should have no trouble 
with this concept considering how close he came to defining a polar-coordinate system 
in his description of the spiral that bears his name. Unhooking him from the straitjacket 
of compass-and-straightedge construction to explain how the relationship among three 
variables can be represented by the points on a surface might take a little longer. He 
could then see how the equilibrium surface in Figure 5 presents a global picture of the 
behavior of his floating paraboloids and how the twists and turns of that surface lead to 
catastrophic10 transitions. He could also then appreciate some of the advances made in 
mathematics in the last 23 centuries, although my guess is that he would have expected 
more considering the enormous advances that he alone made in his lifetime. 
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NOTES 
 
1.   A Greek manuscript dating from about the ninth century and containing 

both books of On Floating Bodies was translated into Latin by the Flemish 
Dominican William of Moerbeke in 1269, along with other works of 
Archimedes from other manuscripts. The tracks of the Greek manuscript 
were lost in the fourteenth century, but Moerbeke’s holograph remains 
intact in the Vatican library (Codex Ottobonianus Latinus 1850)  [5, 8]. 
Moerbeke’s Latin translation was the source of all versions of On Floating 
Bodies from his time until the twentieth century. Moerbeke’s translation of 
both books of On Floating Bodies was first printed in 1565, independently 
by Curtius Troianus in Venice and by Federigo Commandino in Bologna 
[4]. A palimpsest from the tenth century, discovered and edited by J. L. 
Heiberg in 1906, contains the only extant Greek text [16, 25]. The texts by 
Dijksterhuis [8] and Heath [14] are the only translations/paraphrases 
presently available in English. 

 
2.  Also called parabolic conoids or orthoconoids. 
 
3.  Some classic works concerned with how things float are: Christiaan 

Huygens (Dutch, 1629-1695), De iis quae liquido supernatant; Pierre 
Bouguer (French, 1698-1758), Traité du Navire, de sa Construction, et de 
ses Mouvements; Leonhard Euler (Swiss, 1707-1783), Scientia navalis; 
Jean Le Rond d'Alembert (French, 1717-1783), Traité de l'équilibre et du 
Mouvement des Fluide; Fredrik Henrik af Chapman (Swedish, 1721-
1808), Architectura Navalis Mercatoria; George Atwood (English, 1745-
1807); The Construction and Analysis of Geometrical Propositions 
Determining the Positions Assumed by Homogeneal Bodies Which Float 
Freely, and at Rest, on the Fluid's Surface; also Determining the Stability of 
Ships and of Other Floating Bodies; Pierre Dupin (French, 1784-1873), 
Applications de géométrie et de mécanique; August Yulevich Davidov 
(Russian, 1823-1885); The Theory of Equilibrium of Bodies Immersed in a 
Liquid [in Russian]. More recent works include [7, 9-12, 18, 19]. 

 
4.  If   ρair  is the mass-density of the air, then, because the paraboloid is a 

homogeneous convex body, the buoyancy effect of the air can be 
accounted for by defining the relative density as 

( ) ( )airfluidairbodys ρ−ρρ−ρ= . Actually, Archimedes’s description of s as the 
ratio of the weight of the body to the weight of an equal volume of fluid 
results in this expression if the weighing is done in air, but it is doubtful that 
he was aware of the buoyancy effects of air. 

 
5.  Archimedes’s proof for the volume of a right or oblique paraboloid is 

contained in Propositions 21-22 of On Conoids and Spheroids. He gave a 
‘mechanical’ proof of the location of the centroid of a right paraboloid in 
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Proposition 5 of The Method. He used the correct expression for the 
centroid of an oblique paraboloid in On Floating Bodies II, but no proof 
survives [8, 14]. 

 
6.  Symmetry considerations show that if θ is an equilibrium tilt angle when the 

relative density of a floating body of revolution is s, then 180°–θ is an 
equilibrium tilt angle for the body when its relative density is 1–s. Thus only 
tilt angles in the range [0°, 90°] need be explicitly computed. Although 
Archimedes does not mention this fact, it is clear that he was aware of it for 
his paraboloids since his proofs when the base is below the fluid surface 
are the same, mutatis mutandis, as his proofs when the base is above the 
fluid surface. 

 
7.  The integrals determining the volume and centroids of the unsubmerged 

portion can be found in closed form using symbolic algebra programs, but 
they are page-long monstrosities and numerical integration yields results 
much quicker and with more accuracy. Additionally, numerical techniques 
were used to determine when the weight of the displaced fluid is equal to 
the weight of the paraboloid and to find the roots of the righting arm curve. 
The symbolic calculations were performed with Maple™ and 
Mathematica™ and the numerical calculations and graphs were performed 
with MatLab™. 

 
8.  Points NS to first order may be AS or US when higher-order terms are 

considered. In particular, the NS points when θ=0º and 180º are actually 
AS and the rest are US. These NS points are also classified as 
nonhyperbolic, degenerate, and structurally unstable [1, 13]. 

 
9.  Unlike Verne’s iceberg, the center of gravity of the paraboloidal iceberg 

remains fixed relative to its size at a distance of one-third of its height along 
its axis from its base.  

 
10. In Greek: CATASTROPHE = ΚΑΤΑΣΤΡΟΦΗ = a downward turn  
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